3.1.37 \(\int \frac {1}{(1-\cosh (c+d x))^2} \, dx\) [37]

Optimal. Leaf size=51 \[ -\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))^2}-\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))} \]

[Out]

-1/3*sinh(d*x+c)/d/(1-cosh(d*x+c))^2-1/3*sinh(d*x+c)/d/(1-cosh(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2729, 2727} \begin {gather*} -\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))}-\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - Cosh[c + d*x])^(-2),x]

[Out]

-1/3*Sinh[c + d*x]/(d*(1 - Cosh[c + d*x])^2) - Sinh[c + d*x]/(3*d*(1 - Cosh[c + d*x]))

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {1}{(1-\cosh (c+d x))^2} \, dx &=-\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))^2}+\frac {1}{3} \int \frac {1}{1-\cosh (c+d x)} \, dx\\ &=-\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))^2}-\frac {\sinh (c+d x)}{3 d (1-\cosh (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 31, normalized size = 0.61 \begin {gather*} \frac {(-2+\cosh (c+d x)) \sinh (c+d x)}{3 d (-1+\cosh (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - Cosh[c + d*x])^(-2),x]

[Out]

((-2 + Cosh[c + d*x])*Sinh[c + d*x])/(3*d*(-1 + Cosh[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.95, size = 32, normalized size = 0.63

method result size
risch \(-\frac {2 \left (-1+3 \,{\mathrm e}^{d x +c}\right )}{3 d \left ({\mathrm e}^{d x +c}-1\right )^{3}}\) \(26\)
derivativedivides \(\frac {\frac {1}{2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}}{d}\) \(32\)
default \(\frac {\frac {1}{2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}}{d}\) \(32\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-cosh(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/2/tanh(1/2*d*x+1/2*c)-1/6/tanh(1/2*d*x+1/2*c)^3)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 90 vs. \(2 (43) = 86\).
time = 0.26, size = 90, normalized size = 1.76 \begin {gather*} \frac {2 \, e^{\left (-d x - c\right )}}{d {\left (3 \, e^{\left (-d x - c\right )} - 3 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-3 \, d x - 3 \, c\right )} - 1\right )}} - \frac {2}{3 \, d {\left (3 \, e^{\left (-d x - c\right )} - 3 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-3 \, d x - 3 \, c\right )} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cosh(d*x+c))^2,x, algorithm="maxima")

[Out]

2*e^(-d*x - c)/(d*(3*e^(-d*x - c) - 3*e^(-2*d*x - 2*c) + e^(-3*d*x - 3*c) - 1)) - 2/3/(d*(3*e^(-d*x - c) - 3*e
^(-2*d*x - 2*c) + e^(-3*d*x - 3*c) - 1))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 117 vs. \(2 (43) = 86\).
time = 0.41, size = 117, normalized size = 2.29 \begin {gather*} -\frac {2 \, {\left (3 \, \cosh \left (d x + c\right ) + 3 \, \sinh \left (d x + c\right ) - 1\right )}}{3 \, {\left (d \cosh \left (d x + c\right )^{3} + d \sinh \left (d x + c\right )^{3} - 3 \, d \cosh \left (d x + c\right )^{2} + 3 \, {\left (d \cosh \left (d x + c\right ) - d\right )} \sinh \left (d x + c\right )^{2} + 3 \, d \cosh \left (d x + c\right ) + 3 \, {\left (d \cosh \left (d x + c\right )^{2} - 2 \, d \cosh \left (d x + c\right ) + d\right )} \sinh \left (d x + c\right ) - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cosh(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/3*(3*cosh(d*x + c) + 3*sinh(d*x + c) - 1)/(d*cosh(d*x + c)^3 + d*sinh(d*x + c)^3 - 3*d*cosh(d*x + c)^2 + 3*
(d*cosh(d*x + c) - d)*sinh(d*x + c)^2 + 3*d*cosh(d*x + c) + 3*(d*cosh(d*x + c)^2 - 2*d*cosh(d*x + c) + d)*sinh
(d*x + c) - d)

________________________________________________________________________________________

Sympy [A]
time = 0.66, size = 39, normalized size = 0.76 \begin {gather*} \begin {cases} \frac {1}{2 d \tanh {\left (\frac {c}{2} + \frac {d x}{2} \right )}} - \frac {1}{6 d \tanh ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}} & \text {for}\: d \neq 0 \\\frac {x}{\left (1 - \cosh {\left (c \right )}\right )^{2}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cosh(d*x+c))**2,x)

[Out]

Piecewise((1/(2*d*tanh(c/2 + d*x/2)) - 1/(6*d*tanh(c/2 + d*x/2)**3), Ne(d, 0)), (x/(1 - cosh(c))**2, True))

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 25, normalized size = 0.49 \begin {gather*} -\frac {2 \, {\left (3 \, e^{\left (d x + c\right )} - 1\right )}}{3 \, d {\left (e^{\left (d x + c\right )} - 1\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cosh(d*x+c))^2,x, algorithm="giac")

[Out]

-2/3*(3*e^(d*x + c) - 1)/(d*(e^(d*x + c) - 1)^3)

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 25, normalized size = 0.49 \begin {gather*} -\frac {2\,\left (3\,{\mathrm {e}}^{c+d\,x}-1\right )}{3\,d\,{\left ({\mathrm {e}}^{c+d\,x}-1\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x) - 1)^2,x)

[Out]

-(2*(3*exp(c + d*x) - 1))/(3*d*(exp(c + d*x) - 1)^3)

________________________________________________________________________________________