3.1.95 \(\int \frac {\text {csch}^3(x)}{1+\coth (x)} \, dx\) [95]

Optimal. Leaf size=8 \[ \tanh ^{-1}(\cosh (x))-\text {csch}(x) \]

[Out]

arctanh(cosh(x))-csch(x)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 8, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3582, 3855} \begin {gather*} \tanh ^{-1}(\cosh (x))-\text {csch}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csch[x]^3/(1 + Coth[x]),x]

[Out]

ArcTanh[Cosh[x]] - Csch[x]

Rule 3582

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^2*(
d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Dist[d^2*((m - 2)/(a*(m + n - 1
))), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\text {csch}^3(x)}{1+\coth (x)} \, dx &=-\text {csch}(x)-\int \text {csch}(x) \, dx\\ &=\tanh ^{-1}(\cosh (x))-\text {csch}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 14, normalized size = 1.75 \begin {gather*} -\text {csch}(x)-\log \left (\tanh \left (\frac {x}{2}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csch[x]^3/(1 + Coth[x]),x]

[Out]

-Csch[x] - Log[Tanh[x/2]]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(22\) vs. \(2(8)=16\).
time = 0.56, size = 23, normalized size = 2.88

method result size
default \(\frac {\tanh \left (\frac {x}{2}\right )}{2}-\frac {1}{2 \tanh \left (\frac {x}{2}\right )}-\ln \left (\tanh \left (\frac {x}{2}\right )\right )\) \(23\)
risch \(-\frac {2 \,{\mathrm e}^{x}}{{\mathrm e}^{2 x}-1}-\ln \left ({\mathrm e}^{x}-1\right )+\ln \left ({\mathrm e}^{x}+1\right )\) \(26\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(x)^3/(1+coth(x)),x,method=_RETURNVERBOSE)

[Out]

1/2*tanh(1/2*x)-1/2/tanh(1/2*x)-ln(tanh(1/2*x))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 31 vs. \(2 (8) = 16\).
time = 0.27, size = 31, normalized size = 3.88 \begin {gather*} \frac {2 \, e^{\left (-x\right )}}{e^{\left (-2 \, x\right )} - 1} + \log \left (e^{\left (-x\right )} + 1\right ) - \log \left (e^{\left (-x\right )} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(1+coth(x)),x, algorithm="maxima")

[Out]

2*e^(-x)/(e^(-2*x) - 1) + log(e^(-x) + 1) - log(e^(-x) - 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 77 vs. \(2 (8) = 16\).
time = 0.39, size = 77, normalized size = 9.62 \begin {gather*} \frac {{\left (\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) - {\left (\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) - 1\right ) - 2 \, \cosh \left (x\right ) - 2 \, \sinh \left (x\right )}{\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(1+coth(x)),x, algorithm="fricas")

[Out]

((cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*log(cosh(x) + sinh(x) + 1) - (cosh(x)^2 + 2*cosh(x)*sinh(x) +
 sinh(x)^2 - 1)*log(cosh(x) + sinh(x) - 1) - 2*cosh(x) - 2*sinh(x))/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2
 - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {csch}^{3}{\left (x \right )}}{\coth {\left (x \right )} + 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)**3/(1+coth(x)),x)

[Out]

Integral(csch(x)**3/(coth(x) + 1), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 26 vs. \(2 (8) = 16\).
time = 0.41, size = 26, normalized size = 3.25 \begin {gather*} -\frac {2 \, e^{x}}{e^{\left (2 \, x\right )} - 1} + \log \left (e^{x} + 1\right ) - \log \left ({\left | e^{x} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(1+coth(x)),x, algorithm="giac")

[Out]

-2*e^x/(e^(2*x) - 1) + log(e^x + 1) - log(abs(e^x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.08, size = 29, normalized size = 3.62 \begin {gather*} \ln \left (2\,{\mathrm {e}}^x+2\right )-\ln \left (2\,{\mathrm {e}}^x-2\right )-\frac {2\,{\mathrm {e}}^x}{{\mathrm {e}}^{2\,x}-1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sinh(x)^3*(coth(x) + 1)),x)

[Out]

log(2*exp(x) + 2) - log(2*exp(x) - 2) - (2*exp(x))/(exp(2*x) - 1)

________________________________________________________________________________________