3.2.33 \(\int \coth (x) \sqrt {1+\coth (x)} \, dx\) [133]

Optimal. Leaf size=32 \[ \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1+\coth (x)}}{\sqrt {2}}\right )-2 \sqrt {1+\coth (x)} \]

[Out]

arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-2*(1+coth(x))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3608, 3561, 212} \begin {gather*} \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {\coth (x)+1}}{\sqrt {2}}\right )-2 \sqrt {\coth (x)+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]*Sqrt[1 + Coth[x]],x]

[Out]

Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - 2*Sqrt[1 + Coth[x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3608

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*(
(a + b*Tan[e + f*x])^m/(f*m)), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rubi steps

\begin {align*} \int \coth (x) \sqrt {1+\coth (x)} \, dx &=-2 \sqrt {1+\coth (x)}+\int \sqrt {1+\coth (x)} \, dx\\ &=-2 \sqrt {1+\coth (x)}+2 \text {Subst}\left (\int \frac {1}{2-x^2} \, dx,x,\sqrt {1+\coth (x)}\right )\\ &=\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1+\coth (x)}}{\sqrt {2}}\right )-2 \sqrt {1+\coth (x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.08, size = 53, normalized size = 1.66 \begin {gather*} (1+i) \sqrt {1+\coth (x)} \left ((-1+i)-\frac {i \text {ArcTan}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {i (1+\coth (x))}\right )}{\sqrt {i (1+\coth (x))}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]*Sqrt[1 + Coth[x]],x]

[Out]

(1 + I)*Sqrt[1 + Coth[x]]*((-1 + I) - (I*ArcTan[(1/2 + I/2)*Sqrt[I*(1 + Coth[x])]])/Sqrt[I*(1 + Coth[x])])

________________________________________________________________________________________

Maple [A]
time = 0.68, size = 26, normalized size = 0.81

method result size
derivativedivides \(\arctanh \left (\frac {\sqrt {1+\coth \left (x \right )}\, \sqrt {2}}{2}\right ) \sqrt {2}-2 \sqrt {1+\coth \left (x \right )}\) \(26\)
default \(\arctanh \left (\frac {\sqrt {1+\coth \left (x \right )}\, \sqrt {2}}{2}\right ) \sqrt {2}-2 \sqrt {1+\coth \left (x \right )}\) \(26\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)*(1+coth(x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-2*(1+coth(x))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(coth(x) + 1)*coth(x), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (25) = 50\).
time = 0.36, size = 131, normalized size = 4.09 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (\sqrt {2} \cosh \left (x\right ) + \sqrt {2} \sinh \left (x\right )\right )} \sqrt {\frac {\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} - {\left (\sqrt {2} \cosh \left (x\right )^{2} + 2 \, \sqrt {2} \cosh \left (x\right ) \sinh \left (x\right ) + \sqrt {2} \sinh \left (x\right )^{2} - \sqrt {2}\right )} \log \left (2 \, \sqrt {2} \sqrt {\frac {\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} {\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} + 2 \, \cosh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right ) + 2 \, \sinh \left (x\right )^{2} - 1\right )}{2 \, {\left (\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*(sqrt(2)*cosh(x) + sqrt(2)*sinh(x))*sqrt(sinh(x)/(cosh(x) - sinh(x))) - (sqrt(2)*cosh(x)^2 + 2
*sqrt(2)*cosh(x)*sinh(x) + sqrt(2)*sinh(x)^2 - sqrt(2))*log(2*sqrt(2)*sqrt(sinh(x)/(cosh(x) - sinh(x)))*(cosh(
x) + sinh(x)) + 2*cosh(x)^2 + 4*cosh(x)*sinh(x) + 2*sinh(x)^2 - 1))/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2
 - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {\coth {\left (x \right )} + 1} \coth {\left (x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))**(1/2),x)

[Out]

Integral(sqrt(coth(x) + 1)*coth(x), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 71 vs. \(2 (25) = 50\).
time = 0.41, size = 71, normalized size = 2.22 \begin {gather*} -\frac {1}{2} \, \sqrt {2} {\left (\log \left ({\left | 2 \, \sqrt {e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 2 \, e^{\left (2 \, x\right )} + 1 \right |}\right ) \mathrm {sgn}\left (e^{\left (2 \, x\right )} - 1\right ) + \frac {4 \, \mathrm {sgn}\left (e^{\left (2 \, x\right )} - 1\right )}{\sqrt {e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )} + 1}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(log(abs(2*sqrt(e^(4*x) - e^(2*x)) - 2*e^(2*x) + 1))*sgn(e^(2*x) - 1) + 4*sgn(e^(2*x) - 1)/(sqrt(
e^(4*x) - e^(2*x)) - e^(2*x) + 1))

________________________________________________________________________________________

Mupad [B]
time = 1.20, size = 25, normalized size = 0.78 \begin {gather*} \sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {\mathrm {coth}\left (x\right )+1}}{2}\right )-2\,\sqrt {\mathrm {coth}\left (x\right )+1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)*(coth(x) + 1)^(1/2),x)

[Out]

2^(1/2)*atanh((2^(1/2)*(coth(x) + 1)^(1/2))/2) - 2*(coth(x) + 1)^(1/2)

________________________________________________________________________________________