3.2.15 \(\int \frac {\tanh ^5(x)}{a+b \text {sech}(x)} \, dx\) [115]

Optimal. Leaf size=72 \[ \frac {\log (\cosh (x))}{a}+\frac {\left (a^2-b^2\right )^2 \log (a+b \text {sech}(x))}{a b^4}-\frac {\left (a^2-2 b^2\right ) \text {sech}(x)}{b^3}+\frac {a \text {sech}^2(x)}{2 b^2}-\frac {\text {sech}^3(x)}{3 b} \]

[Out]

ln(cosh(x))/a+(a^2-b^2)^2*ln(a+b*sech(x))/a/b^4-(a^2-2*b^2)*sech(x)/b^3+1/2*a*sech(x)^2/b^2-1/3*sech(x)^3/b

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3970, 908} \begin {gather*} \frac {\left (a^2-b^2\right )^2 \log (a+b \text {sech}(x))}{a b^4}-\frac {\left (a^2-2 b^2\right ) \text {sech}(x)}{b^3}+\frac {a \text {sech}^2(x)}{2 b^2}+\frac {\log (\cosh (x))}{a}-\frac {\text {sech}^3(x)}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^5/(a + b*Sech[x]),x]

[Out]

Log[Cosh[x]]/a + ((a^2 - b^2)^2*Log[a + b*Sech[x]])/(a*b^4) - ((a^2 - 2*b^2)*Sech[x])/b^3 + (a*Sech[x]^2)/(2*b
^2) - Sech[x]^3/(3*b)

Rule 908

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tanh ^5(x)}{a+b \text {sech}(x)} \, dx &=-\frac {\text {Subst}\left (\int \frac {\left (b^2-x^2\right )^2}{x (a+x)} \, dx,x,b \text {sech}(x)\right )}{b^4}\\ &=-\frac {\text {Subst}\left (\int \left (a^2 \left (1-\frac {2 b^2}{a^2}\right )+\frac {b^4}{a x}-a x+x^2-\frac {\left (a^2-b^2\right )^2}{a (a+x)}\right ) \, dx,x,b \text {sech}(x)\right )}{b^4}\\ &=\frac {\log (\cosh (x))}{a}+\frac {\left (a^2-b^2\right )^2 \log (a+b \text {sech}(x))}{a b^4}-\frac {\left (a^2-2 b^2\right ) \text {sech}(x)}{b^3}+\frac {a \text {sech}^2(x)}{2 b^2}-\frac {\text {sech}^3(x)}{3 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 85, normalized size = 1.18 \begin {gather*} \frac {-6 a^2 \left (a^2-2 b^2\right ) \log (\cosh (x))+6 \left (a^2-b^2\right )^2 \log (b+a \cosh (x))-6 a b \left (a^2-2 b^2\right ) \text {sech}(x)+3 a^2 b^2 \text {sech}^2(x)-2 a b^3 \text {sech}^3(x)}{6 a b^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^5/(a + b*Sech[x]),x]

[Out]

(-6*a^2*(a^2 - 2*b^2)*Log[Cosh[x]] + 6*(a^2 - b^2)^2*Log[b + a*Cosh[x]] - 6*a*b*(a^2 - 2*b^2)*Sech[x] + 3*a^2*
b^2*Sech[x]^2 - 2*a*b^3*Sech[x]^3)/(6*a*b^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(157\) vs. \(2(68)=136\).
time = 0.71, size = 158, normalized size = 2.19

method result size
default \(-\frac {\ln \left (\tanh \left (\frac {x}{2}\right )+1\right )}{a}-\frac {a \left (a^{2}-2 b^{2}\right ) \ln \left (\tanh ^{2}\left (\frac {x}{2}\right )+1\right )+\frac {2 b \left (a^{2}+a b -b^{2}\right )}{\tanh ^{2}\left (\frac {x}{2}\right )+1}+\frac {8 b^{3}}{3 \left (\tanh ^{2}\left (\frac {x}{2}\right )+1\right )^{3}}-\frac {2 b^{2} \left (2 b +a \right )}{\left (\tanh ^{2}\left (\frac {x}{2}\right )+1\right )^{2}}}{b^{4}}-\frac {\ln \left (\tanh \left (\frac {x}{2}\right )-1\right )}{a}+\frac {\left (a -b \right )^{2} \left (a^{2}+2 a b +b^{2}\right ) \ln \left (a \left (\tanh ^{2}\left (\frac {x}{2}\right )\right )-b \left (\tanh ^{2}\left (\frac {x}{2}\right )\right )+a +b \right )}{a \,b^{4}}\) \(158\)
risch \(-\frac {x}{a}-\frac {2 \,{\mathrm e}^{x} \left (3 a^{2} {\mathrm e}^{4 x}-6 b^{2} {\mathrm e}^{4 x}-3 a b \,{\mathrm e}^{3 x}+6 a^{2} {\mathrm e}^{2 x}-8 b^{2} {\mathrm e}^{2 x}-3 b \,{\mathrm e}^{x} a +3 a^{2}-6 b^{2}\right )}{3 b^{3} \left (1+{\mathrm e}^{2 x}\right )^{3}}-\frac {a^{3} \ln \left (1+{\mathrm e}^{2 x}\right )}{b^{4}}+\frac {2 a \ln \left (1+{\mathrm e}^{2 x}\right )}{b^{2}}+\frac {a^{3} \ln \left ({\mathrm e}^{2 x}+\frac {2 b \,{\mathrm e}^{x}}{a}+1\right )}{b^{4}}-\frac {2 a \ln \left ({\mathrm e}^{2 x}+\frac {2 b \,{\mathrm e}^{x}}{a}+1\right )}{b^{2}}+\frac {\ln \left ({\mathrm e}^{2 x}+\frac {2 b \,{\mathrm e}^{x}}{a}+1\right )}{a}\) \(174\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a+b*sech(x)),x,method=_RETURNVERBOSE)

[Out]

-1/a*ln(tanh(1/2*x)+1)-1/b^4*(a*(a^2-2*b^2)*ln(tanh(1/2*x)^2+1)+2*b*(a^2+a*b-b^2)/(tanh(1/2*x)^2+1)+8/3*b^3/(t
anh(1/2*x)^2+1)^3-2*b^2*(2*b+a)/(tanh(1/2*x)^2+1)^2)-1/a*ln(tanh(1/2*x)-1)+(a-b)^2*(a^2+2*a*b+b^2)/a/b^4*ln(a*
tanh(1/2*x)^2-b*tanh(1/2*x)^2+a+b)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 164 vs. \(2 (68) = 136\).
time = 0.51, size = 164, normalized size = 2.28 \begin {gather*} \frac {2 \, {\left (3 \, a b e^{\left (-2 \, x\right )} + 3 \, a b e^{\left (-4 \, x\right )} - 3 \, {\left (a^{2} - 2 \, b^{2}\right )} e^{\left (-x\right )} - 2 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )} e^{\left (-3 \, x\right )} - 3 \, {\left (a^{2} - 2 \, b^{2}\right )} e^{\left (-5 \, x\right )}\right )}}{3 \, {\left (3 \, b^{3} e^{\left (-2 \, x\right )} + 3 \, b^{3} e^{\left (-4 \, x\right )} + b^{3} e^{\left (-6 \, x\right )} + b^{3}\right )}} + \frac {x}{a} - \frac {{\left (a^{3} - 2 \, a b^{2}\right )} \log \left (e^{\left (-2 \, x\right )} + 1\right )}{b^{4}} + \frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \log \left (2 \, b e^{\left (-x\right )} + a e^{\left (-2 \, x\right )} + a\right )}{a b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*sech(x)),x, algorithm="maxima")

[Out]

2/3*(3*a*b*e^(-2*x) + 3*a*b*e^(-4*x) - 3*(a^2 - 2*b^2)*e^(-x) - 2*(3*a^2 - 4*b^2)*e^(-3*x) - 3*(a^2 - 2*b^2)*e
^(-5*x))/(3*b^3*e^(-2*x) + 3*b^3*e^(-4*x) + b^3*e^(-6*x) + b^3) + x/a - (a^3 - 2*a*b^2)*log(e^(-2*x) + 1)/b^4
+ (a^4 - 2*a^2*b^2 + b^4)*log(2*b*e^(-x) + a*e^(-2*x) + a)/(a*b^4)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1280 vs. \(2 (68) = 136\).
time = 0.37, size = 1280, normalized size = 17.78 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*sech(x)),x, algorithm="fricas")

[Out]

-1/3*(3*b^4*x*cosh(x)^6 + 3*b^4*x*sinh(x)^6 + 6*(a^3*b - 2*a*b^3)*cosh(x)^5 + 6*(3*b^4*x*cosh(x) + a^3*b - 2*a
*b^3)*sinh(x)^5 + 3*b^4*x + 3*(3*b^4*x - 2*a^2*b^2)*cosh(x)^4 + 3*(15*b^4*x*cosh(x)^2 + 3*b^4*x - 2*a^2*b^2 +
10*(a^3*b - 2*a*b^3)*cosh(x))*sinh(x)^4 + 4*(3*a^3*b - 4*a*b^3)*cosh(x)^3 + 4*(15*b^4*x*cosh(x)^3 + 3*a^3*b -
4*a*b^3 + 15*(a^3*b - 2*a*b^3)*cosh(x)^2 + 3*(3*b^4*x - 2*a^2*b^2)*cosh(x))*sinh(x)^3 + 3*(3*b^4*x - 2*a^2*b^2
)*cosh(x)^2 + 3*(15*b^4*x*cosh(x)^4 + 3*b^4*x - 2*a^2*b^2 + 20*(a^3*b - 2*a*b^3)*cosh(x)^3 + 6*(3*b^4*x - 2*a^
2*b^2)*cosh(x)^2 + 4*(3*a^3*b - 4*a*b^3)*cosh(x))*sinh(x)^2 + 6*(a^3*b - 2*a*b^3)*cosh(x) - 3*((a^4 - 2*a^2*b^
2 + b^4)*cosh(x)^6 + 6*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)*sinh(x)^5 + (a^4 - 2*a^2*b^2 + b^4)*sinh(x)^6 + 3*(a^4
- 2*a^2*b^2 + b^4)*cosh(x)^4 + 3*(a^4 - 2*a^2*b^2 + b^4 + 5*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2)*sinh(x)^4 + a^4
 - 2*a^2*b^2 + b^4 + 4*(5*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^3 + 3*(a^4 - 2*a^2*b^2 + b^4)*cosh(x))*sinh(x)^3 + 3
*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2 + 3*(5*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^4 + a^4 - 2*a^2*b^2 + b^4 + 6*(a^4 -
 2*a^2*b^2 + b^4)*cosh(x)^2)*sinh(x)^2 + 6*((a^4 - 2*a^2*b^2 + b^4)*cosh(x)^5 + 2*(a^4 - 2*a^2*b^2 + b^4)*cosh
(x)^3 + (a^4 - 2*a^2*b^2 + b^4)*cosh(x))*sinh(x))*log(2*(a*cosh(x) + b)/(cosh(x) - sinh(x))) + 3*((a^4 - 2*a^2
*b^2)*cosh(x)^6 + 6*(a^4 - 2*a^2*b^2)*cosh(x)*sinh(x)^5 + (a^4 - 2*a^2*b^2)*sinh(x)^6 + 3*(a^4 - 2*a^2*b^2)*co
sh(x)^4 + 3*(a^4 - 2*a^2*b^2 + 5*(a^4 - 2*a^2*b^2)*cosh(x)^2)*sinh(x)^4 + a^4 - 2*a^2*b^2 + 4*(5*(a^4 - 2*a^2*
b^2)*cosh(x)^3 + 3*(a^4 - 2*a^2*b^2)*cosh(x))*sinh(x)^3 + 3*(a^4 - 2*a^2*b^2)*cosh(x)^2 + 3*(5*(a^4 - 2*a^2*b^
2)*cosh(x)^4 + a^4 - 2*a^2*b^2 + 6*(a^4 - 2*a^2*b^2)*cosh(x)^2)*sinh(x)^2 + 6*((a^4 - 2*a^2*b^2)*cosh(x)^5 + 2
*(a^4 - 2*a^2*b^2)*cosh(x)^3 + (a^4 - 2*a^2*b^2)*cosh(x))*sinh(x))*log(2*cosh(x)/(cosh(x) - sinh(x))) + 6*(3*b
^4*x*cosh(x)^5 + 5*(a^3*b - 2*a*b^3)*cosh(x)^4 + a^3*b - 2*a*b^3 + 2*(3*b^4*x - 2*a^2*b^2)*cosh(x)^3 + 2*(3*a^
3*b - 4*a*b^3)*cosh(x)^2 + (3*b^4*x - 2*a^2*b^2)*cosh(x))*sinh(x))/(a*b^4*cosh(x)^6 + 6*a*b^4*cosh(x)*sinh(x)^
5 + a*b^4*sinh(x)^6 + 3*a*b^4*cosh(x)^4 + 3*a*b^4*cosh(x)^2 + a*b^4 + 3*(5*a*b^4*cosh(x)^2 + a*b^4)*sinh(x)^4
+ 4*(5*a*b^4*cosh(x)^3 + 3*a*b^4*cosh(x))*sinh(x)^3 + 3*(5*a*b^4*cosh(x)^4 + 6*a*b^4*cosh(x)^2 + a*b^4)*sinh(x
)^2 + 6*(a*b^4*cosh(x)^5 + 2*a*b^4*cosh(x)^3 + a*b^4*cosh(x))*sinh(x))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh ^{5}{\left (x \right )}}{a + b \operatorname {sech}{\left (x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**5/(a+b*sech(x)),x)

[Out]

Integral(tanh(x)**5/(a + b*sech(x)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 152 vs. \(2 (68) = 136\).
time = 0.39, size = 152, normalized size = 2.11 \begin {gather*} -\frac {{\left (a^{3} - 2 \, a b^{2}\right )} \log \left (e^{\left (-x\right )} + e^{x}\right )}{b^{4}} + \frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \log \left ({\left | a {\left (e^{\left (-x\right )} + e^{x}\right )} + 2 \, b \right |}\right )}{a b^{4}} + \frac {11 \, a^{3} {\left (e^{\left (-x\right )} + e^{x}\right )}^{3} - 22 \, a b^{2} {\left (e^{\left (-x\right )} + e^{x}\right )}^{3} - 12 \, a^{2} b {\left (e^{\left (-x\right )} + e^{x}\right )}^{2} + 24 \, b^{3} {\left (e^{\left (-x\right )} + e^{x}\right )}^{2} + 12 \, a b^{2} {\left (e^{\left (-x\right )} + e^{x}\right )} - 16 \, b^{3}}{6 \, b^{4} {\left (e^{\left (-x\right )} + e^{x}\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*sech(x)),x, algorithm="giac")

[Out]

-(a^3 - 2*a*b^2)*log(e^(-x) + e^x)/b^4 + (a^4 - 2*a^2*b^2 + b^4)*log(abs(a*(e^(-x) + e^x) + 2*b))/(a*b^4) + 1/
6*(11*a^3*(e^(-x) + e^x)^3 - 22*a*b^2*(e^(-x) + e^x)^3 - 12*a^2*b*(e^(-x) + e^x)^2 + 24*b^3*(e^(-x) + e^x)^2 +
 12*a*b^2*(e^(-x) + e^x) - 16*b^3)/(b^4*(e^(-x) + e^x)^3)

________________________________________________________________________________________

Mupad [B]
time = 1.80, size = 155, normalized size = 2.15 \begin {gather*} \frac {\frac {2\,a}{b^2}-\frac {2\,{\mathrm {e}}^x\,\left (a^2-2\,b^2\right )}{b^3}}{{\mathrm {e}}^{2\,x}+1}-\frac {x}{a}-\frac {\frac {2\,a}{b^2}+\frac {8\,{\mathrm {e}}^x}{3\,b}}{2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}+1}+\frac {\ln \left ({\mathrm {e}}^{2\,x}+1\right )\,\left (2\,a\,b^2-a^3\right )}{b^4}+\frac {8\,{\mathrm {e}}^x}{3\,b\,\left (3\,{\mathrm {e}}^{2\,x}+3\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^{6\,x}+1\right )}+\frac {\ln \left (a+2\,b\,{\mathrm {e}}^x+a\,{\mathrm {e}}^{2\,x}\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{a\,b^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a + b/cosh(x)),x)

[Out]

((2*a)/b^2 - (2*exp(x)*(a^2 - 2*b^2))/b^3)/(exp(2*x) + 1) - x/a - ((2*a)/b^2 + (8*exp(x))/(3*b))/(2*exp(2*x) +
 exp(4*x) + 1) + (log(exp(2*x) + 1)*(2*a*b^2 - a^3))/b^4 + (8*exp(x))/(3*b*(3*exp(2*x) + 3*exp(4*x) + exp(6*x)
 + 1)) + (log(a + 2*b*exp(x) + a*exp(2*x))*(a^4 + b^4 - 2*a^2*b^2))/(a*b^4)

________________________________________________________________________________________