3.2.98 \(\int \frac {\sqrt {\text {sech}(a+b \log (c x^n))}}{x} \, dx\) [198]

Optimal. Leaf size=58 \[ -\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{b n} \]

[Out]

-2*I*(cosh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/cosh(1/2*a+1/2*b*ln(c*x^n))*EllipticF(I*sinh(1/2*a+1/2*b*ln(c*x^n))
,2^(1/2))*cosh(a+b*ln(c*x^n))^(1/2)*sech(a+b*ln(c*x^n))^(1/2)/b/n

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3856, 2720} \begin {gather*} -\frac {2 i \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{b n} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sech[a + b*Log[c*x^n]]]/x,x]

[Out]

((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/(b*n
)

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx &=\frac {\text {Subst}\left (\int \sqrt {\text {sech}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac {\left (\sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {\cosh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=-\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{b n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 58, normalized size = 1.00 \begin {gather*} -\frac {2 i \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\text {sech}\left (a+b \log \left (c x^n\right )\right )}}{b n} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sech[a + b*Log[c*x^n]]]/x,x]

[Out]

((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/(b*n
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(182\) vs. \(2(90)=180\).
time = 4.71, size = 183, normalized size = 3.16

method result size
derivativedivides \(\frac {2 \sqrt {\left (2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1\right ) \left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \sqrt {-\left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \sqrt {-2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+1}\, \EllipticF \left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )}{n \sqrt {2 \left (\sinh ^{4}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1}\, b}\) \(183\)
default \(\frac {2 \sqrt {\left (2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1\right ) \left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \sqrt {-\left (\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}\, \sqrt {-2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+1}\, \EllipticF \left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )}{n \sqrt {2 \left (\sinh ^{4}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )+\sinh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 \left (\cosh ^{2}\left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )-1}\, b}\) \(183\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(a+b*ln(c*x^n))^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

2/n*((2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)
^(1/2)*(-2*cosh(1/2*a+1/2*b*ln(c*x^n))^2+1)^(1/2)/(2*sinh(1/2*a+1/2*b*ln(c*x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))
^2)^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))/sinh(1/2*a+1/2*b*ln(c*x^n))/(2*cosh(1/2*a+1/2*b*ln(c*
x^n))^2-1)^(1/2)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(sech(b*log(c*x^n) + a))/x, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.08, size = 39, normalized size = 0.67 \begin {gather*} \frac {2 \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{b n} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="fricas")

[Out]

2*sqrt(2)*weierstrassPInverse(-4, 0, cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a))/(b*n)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\operatorname {sech}{\left (a + b \log {\left (c x^{n} \right )} \right )}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(a+b*ln(c*x**n))**(1/2)/x,x)

[Out]

Integral(sqrt(sech(a + b*log(c*x**n)))/x, x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(a+b*log(c*x^n))^(1/2)/x,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {\frac {1}{\mathrm {cosh}\left (a+b\,\ln \left (c\,x^n\right )\right )}}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cosh(a + b*log(c*x^n)))^(1/2)/x,x)

[Out]

int((1/cosh(a + b*log(c*x^n)))^(1/2)/x, x)

________________________________________________________________________________________