3.1.36 \(\int \frac {1}{(a \text {sech}^2(x))^{3/2}} \, dx\) [36]

Optimal. Leaf size=36 \[ \frac {\tanh (x)}{3 \left (a \text {sech}^2(x)\right )^{3/2}}+\frac {2 \tanh (x)}{3 a \sqrt {a \text {sech}^2(x)}} \]

[Out]

1/3*tanh(x)/(a*sech(x)^2)^(3/2)+2/3*tanh(x)/a/(a*sech(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {4207, 198, 197} \begin {gather*} \frac {2 \tanh (x)}{3 a \sqrt {a \text {sech}^2(x)}}+\frac {\tanh (x)}{3 \left (a \text {sech}^2(x)\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*Sech[x]^2)^(-3/2),x]

[Out]

Tanh[x]/(3*(a*Sech[x]^2)^(3/2)) + (2*Tanh[x])/(3*a*Sqrt[a*Sech[x]^2])

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 4207

Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[b*(ff/
f), Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] &&  !IntegerQ[p
]

Rubi steps

\begin {align*} \int \frac {1}{\left (a \text {sech}^2(x)\right )^{3/2}} \, dx &=a \text {Subst}\left (\int \frac {1}{\left (a-a x^2\right )^{5/2}} \, dx,x,\tanh (x)\right )\\ &=\frac {\tanh (x)}{3 \left (a \text {sech}^2(x)\right )^{3/2}}+\frac {2}{3} \text {Subst}\left (\int \frac {1}{\left (a-a x^2\right )^{3/2}} \, dx,x,\tanh (x)\right )\\ &=\frac {\tanh (x)}{3 \left (a \text {sech}^2(x)\right )^{3/2}}+\frac {2 \tanh (x)}{3 a \sqrt {a \text {sech}^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 27, normalized size = 0.75 \begin {gather*} \frac {\text {sech}^3(x) (9 \sinh (x)+\sinh (3 x))}{12 \left (a \text {sech}^2(x)\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*Sech[x]^2)^(-3/2),x]

[Out]

(Sech[x]^3*(9*Sinh[x] + Sinh[3*x]))/(12*(a*Sech[x]^2)^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(129\) vs. \(2(28)=56\).
time = 0.86, size = 130, normalized size = 3.61

method result size
risch \(\frac {{\mathrm e}^{4 x}}{24 a \left (1+{\mathrm e}^{2 x}\right ) \sqrt {\frac {a \,{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{2 x}\right )^{2}}}}+\frac {3 \,{\mathrm e}^{2 x}}{8 a \left (1+{\mathrm e}^{2 x}\right ) \sqrt {\frac {a \,{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{2 x}\right )^{2}}}}-\frac {3}{8 \sqrt {\frac {a \,{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{2 x}\right )^{2}}}\, \left (1+{\mathrm e}^{2 x}\right ) a}-\frac {{\mathrm e}^{-2 x}}{24 a \left (1+{\mathrm e}^{2 x}\right ) \sqrt {\frac {a \,{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{2 x}\right )^{2}}}}\) \(130\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*sech(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24/a*exp(4*x)/(1+exp(2*x))/(a*exp(2*x)/(1+exp(2*x))^2)^(1/2)+3/8/a*exp(2*x)/(1+exp(2*x))/(a*exp(2*x)/(1+exp(
2*x))^2)^(1/2)-3/8/(a*exp(2*x)/(1+exp(2*x))^2)^(1/2)/(1+exp(2*x))/a-1/24/a*exp(-2*x)/(1+exp(2*x))/(a*exp(2*x)/
(1+exp(2*x))^2)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.47, size = 35, normalized size = 0.97 \begin {gather*} \frac {e^{\left (3 \, x\right )}}{24 \, a^{\frac {3}{2}}} - \frac {3 \, e^{\left (-x\right )}}{8 \, a^{\frac {3}{2}}} - \frac {e^{\left (-3 \, x\right )}}{24 \, a^{\frac {3}{2}}} + \frac {3 \, e^{x}}{8 \, a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sech(x)^2)^(3/2),x, algorithm="maxima")

[Out]

1/24*e^(3*x)/a^(3/2) - 3/8*e^(-x)/a^(3/2) - 1/24*e^(-3*x)/a^(3/2) + 3/8*e^x/a^(3/2)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 277 vs. \(2 (28) = 56\).
time = 0.37, size = 277, normalized size = 7.69 \begin {gather*} \frac {{\left ({\left (e^{\left (2 \, x\right )} + 1\right )} \sinh \left (x\right )^{6} + \cosh \left (x\right )^{6} + 6 \, {\left (\cosh \left (x\right ) e^{\left (2 \, x\right )} + \cosh \left (x\right )\right )} \sinh \left (x\right )^{5} + 3 \, {\left (5 \, \cosh \left (x\right )^{2} + {\left (5 \, \cosh \left (x\right )^{2} + 3\right )} e^{\left (2 \, x\right )} + 3\right )} \sinh \left (x\right )^{4} + 9 \, \cosh \left (x\right )^{4} + 4 \, {\left (5 \, \cosh \left (x\right )^{3} + {\left (5 \, \cosh \left (x\right )^{3} + 9 \, \cosh \left (x\right )\right )} e^{\left (2 \, x\right )} + 9 \, \cosh \left (x\right )\right )} \sinh \left (x\right )^{3} + 3 \, {\left (5 \, \cosh \left (x\right )^{4} + 18 \, \cosh \left (x\right )^{2} + {\left (5 \, \cosh \left (x\right )^{4} + 18 \, \cosh \left (x\right )^{2} - 3\right )} e^{\left (2 \, x\right )} - 3\right )} \sinh \left (x\right )^{2} - 9 \, \cosh \left (x\right )^{2} + {\left (\cosh \left (x\right )^{6} + 9 \, \cosh \left (x\right )^{4} - 9 \, \cosh \left (x\right )^{2} - 1\right )} e^{\left (2 \, x\right )} + 6 \, {\left (\cosh \left (x\right )^{5} + 6 \, \cosh \left (x\right )^{3} + {\left (\cosh \left (x\right )^{5} + 6 \, \cosh \left (x\right )^{3} - 3 \, \cosh \left (x\right )\right )} e^{\left (2 \, x\right )} - 3 \, \cosh \left (x\right )\right )} \sinh \left (x\right ) - 1\right )} \sqrt {\frac {a}{e^{\left (4 \, x\right )} + 2 \, e^{\left (2 \, x\right )} + 1}} e^{x}}{24 \, {\left (a^{2} \cosh \left (x\right )^{3} e^{x} + 3 \, a^{2} \cosh \left (x\right )^{2} e^{x} \sinh \left (x\right ) + 3 \, a^{2} \cosh \left (x\right ) e^{x} \sinh \left (x\right )^{2} + a^{2} e^{x} \sinh \left (x\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sech(x)^2)^(3/2),x, algorithm="fricas")

[Out]

1/24*((e^(2*x) + 1)*sinh(x)^6 + cosh(x)^6 + 6*(cosh(x)*e^(2*x) + cosh(x))*sinh(x)^5 + 3*(5*cosh(x)^2 + (5*cosh
(x)^2 + 3)*e^(2*x) + 3)*sinh(x)^4 + 9*cosh(x)^4 + 4*(5*cosh(x)^3 + (5*cosh(x)^3 + 9*cosh(x))*e^(2*x) + 9*cosh(
x))*sinh(x)^3 + 3*(5*cosh(x)^4 + 18*cosh(x)^2 + (5*cosh(x)^4 + 18*cosh(x)^2 - 3)*e^(2*x) - 3)*sinh(x)^2 - 9*co
sh(x)^2 + (cosh(x)^6 + 9*cosh(x)^4 - 9*cosh(x)^2 - 1)*e^(2*x) + 6*(cosh(x)^5 + 6*cosh(x)^3 + (cosh(x)^5 + 6*co
sh(x)^3 - 3*cosh(x))*e^(2*x) - 3*cosh(x))*sinh(x) - 1)*sqrt(a/(e^(4*x) + 2*e^(2*x) + 1))*e^x/(a^2*cosh(x)^3*e^
x + 3*a^2*cosh(x)^2*e^x*sinh(x) + 3*a^2*cosh(x)*e^x*sinh(x)^2 + a^2*e^x*sinh(x)^3)

________________________________________________________________________________________

Sympy [A]
time = 0.38, size = 31, normalized size = 0.86 \begin {gather*} - \frac {2 \tanh ^{3}{\left (x \right )}}{3 \left (a \operatorname {sech}^{2}{\left (x \right )}\right )^{\frac {3}{2}}} + \frac {\tanh {\left (x \right )}}{\left (a \operatorname {sech}^{2}{\left (x \right )}\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sech(x)**2)**(3/2),x)

[Out]

-2*tanh(x)**3/(3*(a*sech(x)**2)**(3/2)) + tanh(x)/(a*sech(x)**2)**(3/2)

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 29, normalized size = 0.81 \begin {gather*} -\frac {{\left (9 \, e^{\left (2 \, x\right )} + 1\right )} e^{\left (-3 \, x\right )} - e^{\left (3 \, x\right )} - 9 \, e^{x}}{24 \, a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*sech(x)^2)^(3/2),x, algorithm="giac")

[Out]

-1/24*((9*e^(2*x) + 1)*e^(-3*x) - e^(3*x) - 9*e^x)/a^(3/2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {1}{{\left (\frac {a}{{\mathrm {cosh}\left (x\right )}^2}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a/cosh(x)^2)^(3/2),x)

[Out]

int(1/(a/cosh(x)^2)^(3/2), x)

________________________________________________________________________________________