3.7.93 \(\int \frac {\cosh ^3(x)}{a \cosh (x)+b \sinh (x)} \, dx\) [693]

Optimal. Leaf size=101 \[ -\frac {a b^2 x}{\left (a^2-b^2\right )^2}+\frac {a x}{2 \left (a^2-b^2\right )}-\frac {b \cosh ^2(x)}{2 \left (a^2-b^2\right )}+\frac {b^3 \log (a \cosh (x)+b \sinh (x))}{\left (a^2-b^2\right )^2}+\frac {a \cosh (x) \sinh (x)}{2 \left (a^2-b^2\right )} \]

[Out]

-a*b^2*x/(a^2-b^2)^2+1/2*a*x/(a^2-b^2)-1/2*b*cosh(x)^2/(a^2-b^2)+b^3*ln(a*cosh(x)+b*sinh(x))/(a^2-b^2)^2+1/2*a
*cosh(x)*sinh(x)/(a^2-b^2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {3179, 2715, 8, 3177, 3212} \begin {gather*} -\frac {a b^2 x}{\left (a^2-b^2\right )^2}+\frac {a x}{2 \left (a^2-b^2\right )}-\frac {b \cosh ^2(x)}{2 \left (a^2-b^2\right )}+\frac {a \sinh (x) \cosh (x)}{2 \left (a^2-b^2\right )}+\frac {b^3 \log (a \cosh (x)+b \sinh (x))}{\left (a^2-b^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[x]^3/(a*Cosh[x] + b*Sinh[x]),x]

[Out]

-((a*b^2*x)/(a^2 - b^2)^2) + (a*x)/(2*(a^2 - b^2)) - (b*Cosh[x]^2)/(2*(a^2 - b^2)) + (b^3*Log[a*Cosh[x] + b*Si
nh[x]])/(a^2 - b^2)^2 + (a*Cosh[x]*Sinh[x])/(2*(a^2 - b^2))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 3177

Int[cos[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp
[a*(x/(a^2 + b^2)), x] + Dist[b/(a^2 + b^2), Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c +
 d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3179

Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
 Simp[b*(Cos[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1))), x] + (Dist[a/(a^2 + b^2), Int[Cos[c + d*x]^(m - 1), x]
, x] + Dist[b^2/(a^2 + b^2), Int[Cos[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a,
b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1]

Rule 3212

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(b*B + c*C)*(x/(b^2 + c^2)), x] + Simp[(c*B - b*C)*(L
og[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2))), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2
+ c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]

Rubi steps

\begin {align*} \int \frac {\cosh ^3(x)}{a \cosh (x)+b \sinh (x)} \, dx &=-\frac {b \cosh ^2(x)}{2 \left (a^2-b^2\right )}+\frac {a \int \cosh ^2(x) \, dx}{a^2-b^2}-\frac {b^2 \int \frac {\cosh (x)}{a \cosh (x)+b \sinh (x)} \, dx}{a^2-b^2}\\ &=-\frac {a b^2 x}{\left (a^2-b^2\right )^2}-\frac {b \cosh ^2(x)}{2 \left (a^2-b^2\right )}+\frac {a \cosh (x) \sinh (x)}{2 \left (a^2-b^2\right )}+\frac {\left (i b^3\right ) \int \frac {-i b \cosh (x)-i a \sinh (x)}{a \cosh (x)+b \sinh (x)} \, dx}{\left (a^2-b^2\right )^2}+\frac {a \int 1 \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {a b^2 x}{\left (a^2-b^2\right )^2}+\frac {a x}{2 \left (a^2-b^2\right )}-\frac {b \cosh ^2(x)}{2 \left (a^2-b^2\right )}+\frac {b^3 \log (a \cosh (x)+b \sinh (x))}{\left (a^2-b^2\right )^2}+\frac {a \cosh (x) \sinh (x)}{2 \left (a^2-b^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 75, normalized size = 0.74 \begin {gather*} \frac {2 a^3 x-6 a b^2 x+\left (-a^2 b+b^3\right ) \cosh (2 x)+4 b^3 \log (a \cosh (x)+b \sinh (x))+a \left (a^2-b^2\right ) \sinh (2 x)}{4 (a-b)^2 (a+b)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[x]^3/(a*Cosh[x] + b*Sinh[x]),x]

[Out]

(2*a^3*x - 6*a*b^2*x + (-(a^2*b) + b^3)*Cosh[2*x] + 4*b^3*Log[a*Cosh[x] + b*Sinh[x]] + a*(a^2 - b^2)*Sinh[2*x]
)/(4*(a - b)^2*(a + b)^2)

________________________________________________________________________________________

Maple [A]
time = 1.19, size = 153, normalized size = 1.51

method result size
risch \(\frac {x b}{\left (a +b \right )^{2}}+\frac {a x}{2 \left (a +b \right )^{2}}+\frac {{\mathrm e}^{2 x}}{8 a +8 b}-\frac {{\mathrm e}^{-2 x}}{8 \left (a -b \right )}-\frac {2 b^{3} x}{a^{4}-2 a^{2} b^{2}+b^{4}}+\frac {b^{3} \ln \left ({\mathrm e}^{2 x}+\frac {a -b}{a +b}\right )}{a^{4}-2 a^{2} b^{2}+b^{4}}\) \(104\)
default \(-\frac {1}{\left (2 a -2 b \right ) \left (\tanh \left (\frac {x}{2}\right )+1\right )^{2}}+\frac {2}{\left (4 a -4 b \right ) \left (\tanh \left (\frac {x}{2}\right )+1\right )}+\frac {\left (-2 b +a \right ) \ln \left (\tanh \left (\frac {x}{2}\right )+1\right )}{2 \left (a -b \right )^{2}}+\frac {1}{\left (2 b +2 a \right ) \left (\tanh \left (\frac {x}{2}\right )-1\right )^{2}}+\frac {2}{\left (4 a +4 b \right ) \left (\tanh \left (\frac {x}{2}\right )-1\right )}+\frac {\left (-2 b -a \right ) \ln \left (\tanh \left (\frac {x}{2}\right )-1\right )}{2 \left (a +b \right )^{2}}+\frac {b^{3} \ln \left (a +2 b \tanh \left (\frac {x}{2}\right )+a \left (\tanh ^{2}\left (\frac {x}{2}\right )\right )\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2}}\) \(153\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)^3/(a*cosh(x)+b*sinh(x)),x,method=_RETURNVERBOSE)

[Out]

-1/(2*a-2*b)/(tanh(1/2*x)+1)^2+2/(4*a-4*b)/(tanh(1/2*x)+1)+1/2*(-2*b+a)/(a-b)^2*ln(tanh(1/2*x)+1)+1/(2*b+2*a)/
(tanh(1/2*x)-1)^2+2/(4*a+4*b)/(tanh(1/2*x)-1)+1/2/(a+b)^2*(-2*b-a)*ln(tanh(1/2*x)-1)+b^3/(a-b)^2/(a+b)^2*ln(a+
2*b*tanh(1/2*x)+a*tanh(1/2*x)^2)

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 86, normalized size = 0.85 \begin {gather*} \frac {b^{3} \log \left (-{\left (a - b\right )} e^{\left (-2 \, x\right )} - a - b\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4}} + \frac {{\left (a + 2 \, b\right )} x}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} + \frac {e^{\left (2 \, x\right )}}{8 \, {\left (a + b\right )}} - \frac {e^{\left (-2 \, x\right )}}{8 \, {\left (a - b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a*cosh(x)+b*sinh(x)),x, algorithm="maxima")

[Out]

b^3*log(-(a - b)*e^(-2*x) - a - b)/(a^4 - 2*a^2*b^2 + b^4) + 1/2*(a + 2*b)*x/(a^2 + 2*a*b + b^2) + 1/8*e^(2*x)
/(a + b) - 1/8*e^(-2*x)/(a - b)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 331 vs. \(2 (95) = 190\).
time = 0.38, size = 331, normalized size = 3.28 \begin {gather*} \frac {{\left (a^{3} - a^{2} b - a b^{2} + b^{3}\right )} \cosh \left (x\right )^{4} + 4 \, {\left (a^{3} - a^{2} b - a b^{2} + b^{3}\right )} \cosh \left (x\right ) \sinh \left (x\right )^{3} + {\left (a^{3} - a^{2} b - a b^{2} + b^{3}\right )} \sinh \left (x\right )^{4} + 4 \, {\left (a^{3} - 3 \, a b^{2} - 2 \, b^{3}\right )} x \cosh \left (x\right )^{2} - a^{3} - a^{2} b + a b^{2} + b^{3} + 2 \, {\left (3 \, {\left (a^{3} - a^{2} b - a b^{2} + b^{3}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (a^{3} - 3 \, a b^{2} - 2 \, b^{3}\right )} x\right )} \sinh \left (x\right )^{2} + 8 \, {\left (b^{3} \cosh \left (x\right )^{2} + 2 \, b^{3} \cosh \left (x\right ) \sinh \left (x\right ) + b^{3} \sinh \left (x\right )^{2}\right )} \log \left (\frac {2 \, {\left (a \cosh \left (x\right ) + b \sinh \left (x\right )\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right ) + 4 \, {\left ({\left (a^{3} - a^{2} b - a b^{2} + b^{3}\right )} \cosh \left (x\right )^{3} + 2 \, {\left (a^{3} - 3 \, a b^{2} - 2 \, b^{3}\right )} x \cosh \left (x\right )\right )} \sinh \left (x\right )}{8 \, {\left ({\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right )^{2} + 2 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sinh \left (x\right )^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a*cosh(x)+b*sinh(x)),x, algorithm="fricas")

[Out]

1/8*((a^3 - a^2*b - a*b^2 + b^3)*cosh(x)^4 + 4*(a^3 - a^2*b - a*b^2 + b^3)*cosh(x)*sinh(x)^3 + (a^3 - a^2*b -
a*b^2 + b^3)*sinh(x)^4 + 4*(a^3 - 3*a*b^2 - 2*b^3)*x*cosh(x)^2 - a^3 - a^2*b + a*b^2 + b^3 + 2*(3*(a^3 - a^2*b
 - a*b^2 + b^3)*cosh(x)^2 + 2*(a^3 - 3*a*b^2 - 2*b^3)*x)*sinh(x)^2 + 8*(b^3*cosh(x)^2 + 2*b^3*cosh(x)*sinh(x)
+ b^3*sinh(x)^2)*log(2*(a*cosh(x) + b*sinh(x))/(cosh(x) - sinh(x))) + 4*((a^3 - a^2*b - a*b^2 + b^3)*cosh(x)^3
 + 2*(a^3 - 3*a*b^2 - 2*b^3)*x*cosh(x))*sinh(x))/((a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2 + 2*(a^4 - 2*a^2*b^2 + b^4
)*cosh(x)*sinh(x) + (a^4 - 2*a^2*b^2 + b^4)*sinh(x)^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)**3/(a*cosh(x)+b*sinh(x)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 111, normalized size = 1.10 \begin {gather*} \frac {b^{3} \log \left ({\left | a e^{\left (2 \, x\right )} + b e^{\left (2 \, x\right )} + a - b \right |}\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4}} + \frac {{\left (a - 2 \, b\right )} x}{2 \, {\left (a^{2} - 2 \, a b + b^{2}\right )}} - \frac {{\left (2 \, a e^{\left (2 \, x\right )} - 4 \, b e^{\left (2 \, x\right )} + a - b\right )} e^{\left (-2 \, x\right )}}{8 \, {\left (a^{2} - 2 \, a b + b^{2}\right )}} + \frac {e^{\left (2 \, x\right )}}{8 \, {\left (a + b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a*cosh(x)+b*sinh(x)),x, algorithm="giac")

[Out]

b^3*log(abs(a*e^(2*x) + b*e^(2*x) + a - b))/(a^4 - 2*a^2*b^2 + b^4) + 1/2*(a - 2*b)*x/(a^2 - 2*a*b + b^2) - 1/
8*(2*a*e^(2*x) - 4*b*e^(2*x) + a - b)*e^(-2*x)/(a^2 - 2*a*b + b^2) + 1/8*e^(2*x)/(a + b)

________________________________________________________________________________________

Mupad [B]
time = 1.67, size = 84, normalized size = 0.83 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}}{8\,a+8\,b}-\frac {{\mathrm {e}}^{-2\,x}}{8\,a-8\,b}+\frac {b^3\,\ln \left (a-b+a\,{\mathrm {e}}^{2\,x}+b\,{\mathrm {e}}^{2\,x}\right )}{a^4-2\,a^2\,b^2+b^4}+\frac {x\,\left (a-2\,b\right )}{2\,{\left (a-b\right )}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)^3/(a*cosh(x) + b*sinh(x)),x)

[Out]

exp(2*x)/(8*a + 8*b) - exp(-2*x)/(8*a - 8*b) + (b^3*log(a - b + a*exp(2*x) + b*exp(2*x)))/(a^4 + b^4 - 2*a^2*b
^2) + (x*(a - 2*b))/(2*(a - b)^2)

________________________________________________________________________________________