3.8.81 \(\int \frac {1}{a+b \coth (x)+c \text {csch}(x)} \, dx\) [781]

Optimal. Leaf size=113 \[ \frac {a x}{a^2-b^2}+\frac {2 a c \tanh ^{-1}\left (\frac {a+(b-c) \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2+c^2}}\right )}{\left (a^2-b^2\right ) \sqrt {a^2-b^2+c^2}}-\frac {b \log (i c+i b \cosh (x)+i a \sinh (x))}{a^2-b^2} \]

[Out]

a*x/(a^2-b^2)-b*ln(I*c+I*b*cosh(x)+I*a*sinh(x))/(a^2-b^2)+2*a*c*arctanh((a+(b-c)*tanh(1/2*x))/(a^2-b^2+c^2)^(1
/2))/(a^2-b^2)/(a^2-b^2+c^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3239, 3216, 3203, 632, 210} \begin {gather*} \frac {2 a c \tanh ^{-1}\left (\frac {a+(b-c) \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2+c^2}}\right )}{\left (a^2-b^2\right ) \sqrt {a^2-b^2+c^2}}-\frac {b \log (i a \sinh (x)+i b \cosh (x)+i c)}{a^2-b^2}+\frac {a x}{a^2-b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Coth[x] + c*Csch[x])^(-1),x]

[Out]

(a*x)/(a^2 - b^2) + (2*a*c*ArcTanh[(a + (b - c)*Tanh[x/2])/Sqrt[a^2 - b^2 + c^2]])/((a^2 - b^2)*Sqrt[a^2 - b^2
 + c^2]) - (b*Log[I*c + I*b*Cosh[x] + I*a*Sinh[x]])/(a^2 - b^2)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 3203

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[2*(f/e), Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rule 3216

Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[c*C*((d + e*x)/(e*(b^2 + c^2))), x] + (Dist[(A*(b^2 + c^2) - a*c*C)/(b^2 + c^2), Int[
1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] - Simp[b*C*(Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 +
 c^2))), x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*c*C, 0]

Rule 3239

Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(-1), x_Symbol] :> Int[Sin[d + e*x
]/(b + a*Sin[d + e*x] + c*Cos[d + e*x]), x] /; FreeQ[{a, b, c, d, e}, x]

Rubi steps

\begin {align*} \int \frac {1}{a+b \coth (x)+c \text {csch}(x)} \, dx &=i \int \frac {\sinh (x)}{i c+i b \cosh (x)+i a \sinh (x)} \, dx\\ &=\frac {a x}{a^2-b^2}-\frac {b \log (i c+i b \cosh (x)+i a \sinh (x))}{a^2-b^2}-\frac {(i a c) \int \frac {1}{i c+i b \cosh (x)+i a \sinh (x)} \, dx}{a^2-b^2}\\ &=\frac {a x}{a^2-b^2}-\frac {b \log (i c+i b \cosh (x)+i a \sinh (x))}{a^2-b^2}-\frac {(2 i a c) \text {Subst}\left (\int \frac {1}{i b+i c+2 i a x-(-i b+i c) x^2} \, dx,x,\tanh \left (\frac {x}{2}\right )\right )}{a^2-b^2}\\ &=\frac {a x}{a^2-b^2}-\frac {b \log (i c+i b \cosh (x)+i a \sinh (x))}{a^2-b^2}+\frac {(4 i a c) \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2+c^2\right )-x^2} \, dx,x,2 i a+2 (i b-i c) \tanh \left (\frac {x}{2}\right )\right )}{a^2-b^2}\\ &=\frac {a x}{a^2-b^2}+\frac {2 a c \tanh ^{-1}\left (\frac {a+(b-c) \tanh \left (\frac {x}{2}\right )}{\sqrt {a^2-b^2+c^2}}\right )}{\left (a^2-b^2\right ) \sqrt {a^2-b^2+c^2}}-\frac {b \log (i c+i b \cosh (x)+i a \sinh (x))}{a^2-b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 86, normalized size = 0.76 \begin {gather*} \frac {a x-\frac {2 a c \text {ArcTan}\left (\frac {a+(b-c) \tanh \left (\frac {x}{2}\right )}{\sqrt {-a^2+b^2-c^2}}\right )}{\sqrt {-a^2+b^2-c^2}}-b \log (c+b \cosh (x)+a \sinh (x))}{a^2-b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Coth[x] + c*Csch[x])^(-1),x]

[Out]

(a*x - (2*a*c*ArcTan[(a + (b - c)*Tanh[x/2])/Sqrt[-a^2 + b^2 - c^2]])/Sqrt[-a^2 + b^2 - c^2] - b*Log[c + b*Cos
h[x] + a*Sinh[x]])/(a^2 - b^2)

________________________________________________________________________________________

Maple [A]
time = 1.25, size = 178, normalized size = 1.58

method result size
default \(-\frac {4 \ln \left (\tanh \left (\frac {x}{2}\right )-1\right )}{4 a +4 b}+\frac {\frac {2 \left (-b^{2}+b c \right ) \ln \left (b \left (\tanh ^{2}\left (\frac {x}{2}\right )\right )-c \left (\tanh ^{2}\left (\frac {x}{2}\right )\right )+2 a \tanh \left (\frac {x}{2}\right )+b +c \right )}{2 b -2 c}+\frac {2 \left (-a b -a c -\frac {\left (-b^{2}+b c \right ) a}{b -c}\right ) \arctan \left (\frac {2 \left (b -c \right ) \tanh \left (\frac {x}{2}\right )+2 a}{2 \sqrt {-a^{2}+b^{2}-c^{2}}}\right )}{\sqrt {-a^{2}+b^{2}-c^{2}}}}{\left (a +b \right ) \left (a -b \right )}+\frac {4 \ln \left (\tanh \left (\frac {x}{2}\right )+1\right )}{4 a -4 b}\) \(178\)
risch \(\frac {x}{a +b}+\frac {2 x \,a^{2} b}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {2 x \,b^{3}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}+\frac {2 x b \,c^{2}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {\ln \left ({\mathrm e}^{x}+\frac {a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) a^{2} b}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}+\frac {\ln \left ({\mathrm e}^{x}+\frac {a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) b^{3}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {\ln \left ({\mathrm e}^{x}+\frac {a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) b \,c^{2}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}+\frac {\ln \left ({\mathrm e}^{x}+\frac {a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) \sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {\ln \left ({\mathrm e}^{x}-\frac {-a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) a^{2} b}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}+\frac {\ln \left ({\mathrm e}^{x}-\frac {-a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) b^{3}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {\ln \left ({\mathrm e}^{x}-\frac {-a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) b \,c^{2}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}-\frac {\ln \left ({\mathrm e}^{x}-\frac {-a \,c^{2}+\sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{\left (a +b \right ) a c}\right ) \sqrt {a^{4} c^{2}-a^{2} b^{2} c^{2}+a^{2} c^{4}}}{a^{4}-2 a^{2} b^{2}+a^{2} c^{2}+b^{4}-b^{2} c^{2}}\) \(880\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*coth(x)+c*csch(x)),x,method=_RETURNVERBOSE)

[Out]

-4/(4*a+4*b)*ln(tanh(1/2*x)-1)+2/(a+b)/(a-b)*(1/2*(-b^2+b*c)/(b-c)*ln(b*tanh(1/2*x)^2-c*tanh(1/2*x)^2+2*a*tanh
(1/2*x)+b+c)+(-a*b-a*c-(-b^2+b*c)*a/(b-c))/(-a^2+b^2-c^2)^(1/2)*arctan(1/2*(2*(b-c)*tanh(1/2*x)+2*a)/(-a^2+b^2
-c^2)^(1/2)))+4/(4*a-4*b)*ln(tanh(1/2*x)+1)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*coth(x)+c*csch(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c^2-b^2+a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 438, normalized size = 3.88 \begin {gather*} \left [-\frac {\sqrt {a^{2} - b^{2} + c^{2}} a c \log \left (\frac {2 \, {\left (a + b\right )} c \cosh \left (x\right ) + {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (x\right )^{2} + {\left (a^{2} + 2 \, a b + b^{2}\right )} \sinh \left (x\right )^{2} + a^{2} - b^{2} + 2 \, c^{2} + 2 \, {\left ({\left (a + b\right )} c + {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (x\right )\right )} \sinh \left (x\right ) - 2 \, \sqrt {a^{2} - b^{2} + c^{2}} {\left ({\left (a + b\right )} \cosh \left (x\right ) + {\left (a + b\right )} \sinh \left (x\right ) + c\right )}}{{\left (a + b\right )} \cosh \left (x\right )^{2} + {\left (a + b\right )} \sinh \left (x\right )^{2} + 2 \, c \cosh \left (x\right ) + 2 \, {\left ({\left (a + b\right )} \cosh \left (x\right ) + c\right )} \sinh \left (x\right ) - a + b}\right ) - {\left (a^{3} + a^{2} b - a b^{2} - b^{3} + {\left (a + b\right )} c^{2}\right )} x + {\left (a^{2} b - b^{3} + b c^{2}\right )} \log \left (\frac {2 \, {\left (b \cosh \left (x\right ) + a \sinh \left (x\right ) + c\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4} + {\left (a^{2} - b^{2}\right )} c^{2}}, -\frac {2 \, \sqrt {-a^{2} + b^{2} - c^{2}} a c \arctan \left (\frac {\sqrt {-a^{2} + b^{2} - c^{2}} {\left ({\left (a + b\right )} \cosh \left (x\right ) + {\left (a + b\right )} \sinh \left (x\right ) + c\right )}}{a^{2} - b^{2} + c^{2}}\right ) - {\left (a^{3} + a^{2} b - a b^{2} - b^{3} + {\left (a + b\right )} c^{2}\right )} x + {\left (a^{2} b - b^{3} + b c^{2}\right )} \log \left (\frac {2 \, {\left (b \cosh \left (x\right ) + a \sinh \left (x\right ) + c\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4} + {\left (a^{2} - b^{2}\right )} c^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*coth(x)+c*csch(x)),x, algorithm="fricas")

[Out]

[-(sqrt(a^2 - b^2 + c^2)*a*c*log((2*(a + b)*c*cosh(x) + (a^2 + 2*a*b + b^2)*cosh(x)^2 + (a^2 + 2*a*b + b^2)*si
nh(x)^2 + a^2 - b^2 + 2*c^2 + 2*((a + b)*c + (a^2 + 2*a*b + b^2)*cosh(x))*sinh(x) - 2*sqrt(a^2 - b^2 + c^2)*((
a + b)*cosh(x) + (a + b)*sinh(x) + c))/((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + 2*c*cosh(x) + 2*((a + b)*cosh(
x) + c)*sinh(x) - a + b)) - (a^3 + a^2*b - a*b^2 - b^3 + (a + b)*c^2)*x + (a^2*b - b^3 + b*c^2)*log(2*(b*cosh(
x) + a*sinh(x) + c)/(cosh(x) - sinh(x))))/(a^4 - 2*a^2*b^2 + b^4 + (a^2 - b^2)*c^2), -(2*sqrt(-a^2 + b^2 - c^2
)*a*c*arctan(sqrt(-a^2 + b^2 - c^2)*((a + b)*cosh(x) + (a + b)*sinh(x) + c)/(a^2 - b^2 + c^2)) - (a^3 + a^2*b
- a*b^2 - b^3 + (a + b)*c^2)*x + (a^2*b - b^3 + b*c^2)*log(2*(b*cosh(x) + a*sinh(x) + c)/(cosh(x) - sinh(x))))
/(a^4 - 2*a^2*b^2 + b^4 + (a^2 - b^2)*c^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{a + b \coth {\left (x \right )} + c \operatorname {csch}{\left (x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*coth(x)+c*csch(x)),x)

[Out]

Integral(1/(a + b*coth(x) + c*csch(x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 106, normalized size = 0.94 \begin {gather*} -\frac {2 \, a c \arctan \left (\frac {a e^{x} + b e^{x} + c}{\sqrt {-a^{2} + b^{2} - c^{2}}}\right )}{{\left (a^{2} - b^{2}\right )} \sqrt {-a^{2} + b^{2} - c^{2}}} - \frac {b \log \left (a e^{\left (2 \, x\right )} + b e^{\left (2 \, x\right )} + 2 \, c e^{x} - a + b\right )}{a^{2} - b^{2}} + \frac {x}{a - b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*coth(x)+c*csch(x)),x, algorithm="giac")

[Out]

-2*a*c*arctan((a*e^x + b*e^x + c)/sqrt(-a^2 + b^2 - c^2))/((a^2 - b^2)*sqrt(-a^2 + b^2 - c^2)) - b*log(a*e^(2*
x) + b*e^(2*x) + 2*c*e^x - a + b)/(a^2 - b^2) + x/(a - b)

________________________________________________________________________________________

Mupad [B]
time = 0.70, size = 324, normalized size = 2.87 \begin {gather*} \frac {x}{a-b}-\frac {\ln \left (\frac {2\,\left (b+c\,{\mathrm {e}}^x\right )}{{\left (a+b\right )}^2}+\frac {2\,\left (b-a+c\,{\mathrm {e}}^x\right )\,\left (a^2\,b+b\,c^2-b^3+a\,c\,\sqrt {a^2-b^2+c^2}\right )}{\left (a+b\right )\,\left (a^2-b^2\right )\,\left (a^2-b^2+c^2\right )}\right )\,\left (a^2\,b+b\,c^2-b^3+a\,c\,\sqrt {a^2-b^2+c^2}\right )}{a^4-2\,a^2\,b^2+a^2\,c^2+b^4-b^2\,c^2}-\frac {\ln \left (\frac {2\,\left (b+c\,{\mathrm {e}}^x\right )}{{\left (a+b\right )}^2}+\frac {2\,\left (b-a+c\,{\mathrm {e}}^x\right )\,\left (a^2\,b+b\,c^2-b^3-a\,c\,\sqrt {a^2-b^2+c^2}\right )}{\left (a+b\right )\,\left (a^2-b^2\right )\,\left (a^2-b^2+c^2\right )}\right )\,\left (a^2\,b+b\,c^2-b^3-a\,c\,\sqrt {a^2-b^2+c^2}\right )}{a^4-2\,a^2\,b^2+a^2\,c^2+b^4-b^2\,c^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + c/sinh(x) + b*coth(x)),x)

[Out]

x/(a - b) - (log((2*(b + c*exp(x)))/(a + b)^2 + (2*(b - a + c*exp(x))*(a^2*b + b*c^2 - b^3 + a*c*(a^2 - b^2 +
c^2)^(1/2)))/((a + b)*(a^2 - b^2)*(a^2 - b^2 + c^2)))*(a^2*b + b*c^2 - b^3 + a*c*(a^2 - b^2 + c^2)^(1/2)))/(a^
4 + b^4 - 2*a^2*b^2 + a^2*c^2 - b^2*c^2) - (log((2*(b + c*exp(x)))/(a + b)^2 + (2*(b - a + c*exp(x))*(a^2*b +
b*c^2 - b^3 - a*c*(a^2 - b^2 + c^2)^(1/2)))/((a + b)*(a^2 - b^2)*(a^2 - b^2 + c^2)))*(a^2*b + b*c^2 - b^3 - a*
c*(a^2 - b^2 + c^2)^(1/2)))/(a^4 + b^4 - 2*a^2*b^2 + a^2*c^2 - b^2*c^2)

________________________________________________________________________________________