3.10.58 \(\int e^{c+d x} \coth ^2(a+b x) \text {csch}(a+b x) \, dx\) [958]

Optimal. Leaf size=151 \[ -\frac {2 e^{a+c+(b+d) x} \, _2F_1\left (1,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}+\frac {8 e^{a+c+(b+d) x} \, _2F_1\left (2,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}-\frac {8 e^{a+c+(b+d) x} \, _2F_1\left (3,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d} \]

[Out]

-2*exp(a+c+(b+d)*x)*hypergeom([1, 1/2*(b+d)/b],[1/2*(3*b+d)/b],exp(2*b*x+2*a))/(b+d)+8*exp(a+c+(b+d)*x)*hyperg
eom([2, 1/2*(b+d)/b],[1/2*(3*b+d)/b],exp(2*b*x+2*a))/(b+d)-8*exp(a+c+(b+d)*x)*hypergeom([3, 1/2*(b+d)/b],[1/2*
(3*b+d)/b],exp(2*b*x+2*a))/(b+d)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {5622, 2283} \begin {gather*} -\frac {2 e^{a+x (b+d)+c} \, _2F_1\left (1,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}+\frac {8 e^{a+x (b+d)+c} \, _2F_1\left (2,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}-\frac {8 e^{a+x (b+d)+c} \, _2F_1\left (3,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(c + d*x)*Coth[a + b*x]^2*Csch[a + b*x],x]

[Out]

(-2*E^(a + c + (b + d)*x)*Hypergeometric2F1[1, (b + d)/(2*b), (3*b + d)/(2*b), E^(2*(a + b*x))])/(b + d) + (8*
E^(a + c + (b + d)*x)*Hypergeometric2F1[2, (b + d)/(2*b), (3*b + d)/(2*b), E^(2*(a + b*x))])/(b + d) - (8*E^(a
 + c + (b + d)*x)*Hypergeometric2F1[3, (b + d)/(2*b), (3*b + d)/(2*b), E^(2*(a + b*x))])/(b + d)

Rule 2283

Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp
[a^p*(G^(h*(f + g*x))/(g*h*Log[G]))*Hypergeometric2F1[-p, g*h*(Log[G]/(d*e*Log[F])), g*h*(Log[G]/(d*e*Log[F]))
 + 1, Simplify[(-b/a)*F^(e*(c + d*x))]], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && (ILtQ[p, 0] || G
tQ[a, 0])

Rule 5622

Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(G_)[(d_.) + (e_.)*(x_)]^(m_.)*(H_)[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol]
 :> Int[ExpandTrigToExp[F^(c*(a + b*x)), G[d + e*x]^m*H[d + e*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
IGtQ[m, 0] && IGtQ[n, 0] && HyperbolicQ[G] && HyperbolicQ[H]

Rubi steps

\begin {align*} \int e^{c+d x} \coth ^2(a+b x) \text {csch}(a+b x) \, dx &=\int \left (\frac {8 e^{a+c+(b+d) x}}{\left (-1+e^{2 (a+b x)}\right )^3}+\frac {8 e^{a+c+(b+d) x}}{\left (-1+e^{2 (a+b x)}\right )^2}+\frac {2 e^{a+c+(b+d) x}}{-1+e^{2 (a+b x)}}\right ) \, dx\\ &=2 \int \frac {e^{a+c+(b+d) x}}{-1+e^{2 (a+b x)}} \, dx+8 \int \frac {e^{a+c+(b+d) x}}{\left (-1+e^{2 (a+b x)}\right )^3} \, dx+8 \int \frac {e^{a+c+(b+d) x}}{\left (-1+e^{2 (a+b x)}\right )^2} \, dx\\ &=-\frac {2 e^{a+c+(b+d) x} \, _2F_1\left (1,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}+\frac {8 e^{a+c+(b+d) x} \, _2F_1\left (2,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}-\frac {8 e^{a+c+(b+d) x} \, _2F_1\left (3,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )}{b+d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.91, size = 111, normalized size = 0.74 \begin {gather*} -\frac {e^{c-\frac {a d}{b}} \left ((b+d) e^{d \left (\frac {a}{b}+x\right )} (d+b \coth (a+b x)) \text {csch}(a+b x)+2 \left (b^2+d^2\right ) e^{\frac {(b+d) (a+b x)}{b}} \, _2F_1\left (1,\frac {b+d}{2 b};\frac {3 b+d}{2 b};e^{2 (a+b x)}\right )\right )}{2 b^2 (b+d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(c + d*x)*Coth[a + b*x]^2*Csch[a + b*x],x]

[Out]

-1/2*(E^(c - (a*d)/b)*((b + d)*E^(d*(a/b + x))*(d + b*Coth[a + b*x])*Csch[a + b*x] + 2*(b^2 + d^2)*E^(((b + d)
*(a + b*x))/b)*Hypergeometric2F1[1, (b + d)/(2*b), (3*b + d)/(2*b), E^(2*(a + b*x))]))/(b^2*(b + d))

________________________________________________________________________________________

Maple [F]
time = 2.50, size = 0, normalized size = 0.00 \[\int {\mathrm e}^{d x +c} \left (\cosh ^{2}\left (b x +a \right )\right ) \mathrm {csch}\left (b x +a \right )^{3}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(d*x+c)*cosh(b*x+a)^2*csch(b*x+a)^3,x)

[Out]

int(exp(d*x+c)*cosh(b*x+a)^2*csch(b*x+a)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^2*csch(b*x+a)^3,x, algorithm="maxima")

[Out]

-48*(b^3*e^c + b*d^2*e^c)*integrate(e^(b*x + d*x + a)/(15*b^3 - 23*b^2*d + 9*b*d^2 - d^3 + (15*b^3 - 23*b^2*d
+ 9*b*d^2 - d^3)*e^(8*b*x + 8*a) - 4*(15*b^3 - 23*b^2*d + 9*b*d^2 - d^3)*e^(6*b*x + 6*a) + 6*(15*b^3 - 23*b^2*
d + 9*b*d^2 - d^3)*e^(4*b*x + 4*a) - 4*(15*b^3 - 23*b^2*d + 9*b*d^2 - d^3)*e^(2*b*x + 2*a)), x) + 2*((15*b^2*e
^c - 8*b*d*e^c + d^2*e^c)*e^(5*b*x + 5*a) - 2*(10*b^2*e^c + 3*b*d*e^c - d^2*e^c)*e^(3*b*x + 3*a) + (9*b^2*e^c
+ 14*b*d*e^c + d^2*e^c)*e^(b*x + a))*e^(d*x)/(15*b^3 - 23*b^2*d + 9*b*d^2 - d^3 - (15*b^3 - 23*b^2*d + 9*b*d^2
 - d^3)*e^(6*b*x + 6*a) + 3*(15*b^3 - 23*b^2*d + 9*b*d^2 - d^3)*e^(4*b*x + 4*a) - 3*(15*b^3 - 23*b^2*d + 9*b*d
^2 - d^3)*e^(2*b*x + 2*a))

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^2*csch(b*x+a)^3,x, algorithm="fricas")

[Out]

integral(cosh(b*x + a)^2*csch(b*x + a)^3*e^(d*x + c), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)**2*csch(b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^2*csch(b*x+a)^3,x, algorithm="giac")

[Out]

integrate(cosh(b*x + a)^2*csch(b*x + a)^3*e^(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {cosh}\left (a+b\,x\right )}^2\,{\mathrm {e}}^{c+d\,x}}{{\mathrm {sinh}\left (a+b\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cosh(a + b*x)^2*exp(c + d*x))/sinh(a + b*x)^3,x)

[Out]

int((cosh(a + b*x)^2*exp(c + d*x))/sinh(a + b*x)^3, x)

________________________________________________________________________________________