3.1.100 \(\int \sqrt {a+b \sinh ^{-1}(c+d x)} \, dx\) [100]

Optimal. Leaf size=115 \[ \frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}+\frac {\sqrt {b} e^{a/b} \sqrt {\pi } \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d}-\frac {\sqrt {b} e^{-\frac {a}{b}} \sqrt {\pi } \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d} \]

[Out]

1/4*exp(a/b)*erf((a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*b^(1/2)*Pi^(1/2)/d-1/4*erfi((a+b*arcsinh(d*x+c))^(1/2)/b^
(1/2))*b^(1/2)*Pi^(1/2)/d/exp(a/b)+(d*x+c)*(a+b*arcsinh(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5858, 5772, 5819, 3389, 2211, 2236, 2235} \begin {gather*} \frac {\sqrt {\pi } \sqrt {b} e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d}-\frac {\sqrt {\pi } \sqrt {b} e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d}+\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

((c + d*x)*Sqrt[a + b*ArcSinh[c + d*x]])/d + (Sqrt[b]*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b
]])/(4*d) - (Sqrt[b]*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*d*E^(a/b))

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5772

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[x*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rule 5858

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rubi steps

\begin {align*} \int \sqrt {a+b \sinh ^{-1}(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \sqrt {a+b \sinh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}-\frac {b \text {Subst}\left (\int \frac {x}{\sqrt {1+x^2} \sqrt {a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}-\frac {b \text {Subst}\left (\int \frac {\sinh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}+\frac {b \text {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}-\frac {b \text {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}\\ &=\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}+\frac {\text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 d}-\frac {\text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 d}\\ &=\frac {(c+d x) \sqrt {a+b \sinh ^{-1}(c+d x)}}{d}+\frac {\sqrt {b} e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d}-\frac {\sqrt {b} e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 111, normalized size = 0.97 \begin {gather*} \frac {e^{-\frac {a}{b}} \sqrt {a+b \sinh ^{-1}(c+d x)} \left (-\frac {e^{\frac {2 a}{b}} \Gamma \left (\frac {3}{2},\frac {a}{b}+\sinh ^{-1}(c+d x)\right )}{\sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)}}+\frac {\Gamma \left (\frac {3}{2},-\frac {a+b \sinh ^{-1}(c+d x)}{b}\right )}{\sqrt {-\frac {a+b \sinh ^{-1}(c+d x)}{b}}}\right )}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(Sqrt[a + b*ArcSinh[c + d*x]]*(-((E^((2*a)/b)*Gamma[3/2, a/b + ArcSinh[c + d*x]])/Sqrt[a/b + ArcSinh[c + d*x]]
) + Gamma[3/2, -((a + b*ArcSinh[c + d*x])/b)]/Sqrt[-((a + b*ArcSinh[c + d*x])/b)]))/(2*d*E^(a/b))

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \sqrt {a +b \arcsinh \left (d x +c \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int((a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*asinh(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {a+b\,\mathrm {asinh}\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c + d*x))^(1/2),x)

[Out]

int((a + b*asinh(c + d*x))^(1/2), x)

________________________________________________________________________________________