3.3.7 \(\int \frac {c e+d e x}{\sqrt {a+b \sinh ^{-1}(c+d x)}} \, dx\) [207]

Optimal. Leaf size=113 \[ -\frac {e e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d}+\frac {e e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d} \]

[Out]

-1/8*e*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d/b^(1/2)+1/8*e*erfi(2^(1/2
)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d/exp(2*a/b)/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {5859, 12, 5780, 5556, 3389, 2211, 2236, 2235} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} e e^{-\frac {2 a}{b}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d}-\frac {\sqrt {\frac {\pi }{2}} e e^{\frac {2 a}{b}} \text {Erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

-1/4*(e*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(Sqrt[b]*d) + (e*Sqrt[Pi/2
]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*Sqrt[b]*d*E^((2*a)/b))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5780

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sinh
[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5859

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int \frac {c e+d e x}{\sqrt {a+b \sinh ^{-1}(c+d x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {e x}{\sqrt {a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e \text {Subst}\left (\int \frac {x}{\sqrt {a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac {e \text {Subst}\left (\int \frac {\cosh (x) \sinh (x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=\frac {e \text {Subst}\left (\int \frac {\sinh (2 x)}{2 \sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=\frac {e \text {Subst}\left (\int \frac {\sinh (2 x)}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 d}\\ &=-\frac {e \text {Subst}\left (\int \frac {e^{-2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}+\frac {e \text {Subst}\left (\int \frac {e^{2 x}}{\sqrt {a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}\\ &=-\frac {e \text {Subst}\left (\int e^{\frac {2 a}{b}-\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 b d}+\frac {e \text {Subst}\left (\int e^{-\frac {2 a}{b}+\frac {2 x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^{-1}(c+d x)}\right )}{2 b d}\\ &=-\frac {e e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d}+\frac {e e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \sinh ^{-1}(c+d x)}}{\sqrt {b}}\right )}{4 \sqrt {b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 119, normalized size = 1.05 \begin {gather*} \frac {e e^{-\frac {2 a}{b}} \left (\sqrt {-\frac {a+b \sinh ^{-1}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+e^{\frac {4 a}{b}} \sqrt {\frac {a}{b}+\sinh ^{-1}(c+d x)} \Gamma \left (\frac {1}{2},\frac {2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )\right )}{4 \sqrt {2} d \sqrt {a+b \sinh ^{-1}(c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(e*(Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-2*(a + b*ArcSinh[c + d*x]))/b] + E^((4*a)/b)*Sqrt[a/b + A
rcSinh[c + d*x]]*Gamma[1/2, (2*(a + b*ArcSinh[c + d*x]))/b]))/(4*Sqrt[2]*d*E^((2*a)/b)*Sqrt[a + b*ArcSinh[c +
d*x]])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {d e x +c e}{\sqrt {a +b \arcsinh \left (d x +c \right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x*e + c*e)/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e \left (\int \frac {c}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {d x}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*asinh(d*x+c))**(1/2),x)

[Out]

e*(Integral(c/sqrt(a + b*asinh(c + d*x)), x) + Integral(d*x/sqrt(a + b*asinh(c + d*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {c\,e+d\,e\,x}{\sqrt {a+b\,\mathrm {asinh}\left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)/(a + b*asinh(c + d*x))^(1/2),x)

[Out]

int((c*e + d*e*x)/(a + b*asinh(c + d*x))^(1/2), x)

________________________________________________________________________________________