3.4.34 \(\int \frac {1}{(a+i b \text {ArcSin}(1-i d x^2))^{7/2}} \, dx\) [334]

Optimal. Leaf size=389 \[ -\frac {\sqrt {2 i d x^2+d^2 x^4}}{5 b d x \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )^{5/2}}-\frac {x}{15 b^2 \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )^{3/2}}-\frac {\sqrt {2 i d x^2+d^2 x^4}}{15 b^3 d x \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}-\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x \text {FresnelC}\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )-i \sinh \left (\frac {a}{2 b}\right )\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )\right )}+\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x S\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )+i \sinh \left (\frac {a}{2 b}\right )\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )\right )} \]

[Out]

-1/15*x/b^2/(a-I*b*arcsin(-1+I*d*x^2))^(3/2)-1/15*(-I/b)^(3/2)*x*FresnelC((-I/b)^(1/2)*(a-I*b*arcsin(-1+I*d*x^
2))^(1/2)/Pi^(1/2))*(cosh(1/2*a/b)-I*sinh(1/2*a/b))*Pi^(1/2)/b^2/(cos(1/2*arcsin(-1+I*d*x^2))+sin(1/2*arcsin(-
1+I*d*x^2)))+1/15*(-I/b)^(3/2)*x*FresnelS((-I/b)^(1/2)*(a-I*b*arcsin(-1+I*d*x^2))^(1/2)/Pi^(1/2))*(cosh(1/2*a/
b)+I*sinh(1/2*a/b))*Pi^(1/2)/b^2/(cos(1/2*arcsin(-1+I*d*x^2))+sin(1/2*arcsin(-1+I*d*x^2)))-1/5*(2*I*d*x^2+d^2*
x^4)^(1/2)/b/d/x/(a-I*b*arcsin(-1+I*d*x^2))^(5/2)-1/15*(2*I*d*x^2+d^2*x^4)^(1/2)/b^3/d/x/(a-I*b*arcsin(-1+I*d*
x^2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 389, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {4912, 4906} \begin {gather*} -\frac {\sqrt {d^2 x^4+2 i d x^2}}{15 b^3 d x \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}-\frac {\sqrt {\pi } \left (-\frac {i}{b}\right )^{3/2} x \left (\cosh \left (\frac {a}{2 b}\right )-i \sinh \left (\frac {a}{2 b}\right )\right ) \text {FresnelC}\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )\right )}+\frac {\sqrt {\pi } \left (-\frac {i}{b}\right )^{3/2} x \left (\cosh \left (\frac {a}{2 b}\right )+i \sinh \left (\frac {a}{2 b}\right )\right ) S\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )\right )}-\frac {x}{15 b^2 \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )^{3/2}}-\frac {\sqrt {d^2 x^4+2 i d x^2}}{5 b d x \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*b*ArcSin[1 - I*d*x^2])^(-7/2),x]

[Out]

-1/5*Sqrt[(2*I)*d*x^2 + d^2*x^4]/(b*d*x*(a + I*b*ArcSin[1 - I*d*x^2])^(5/2)) - x/(15*b^2*(a + I*b*ArcSin[1 - I
*d*x^2])^(3/2)) - Sqrt[(2*I)*d*x^2 + d^2*x^4]/(15*b^3*d*x*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]]) - (((-I)/b)^(3/2)
*Sqrt[Pi]*x*FresnelC[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] - I*Sinh[a/(2*b
)]))/(15*b^2*(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2])) + (((-I)/b)^(3/2)*Sqrt[Pi]*x*FresnelS[
(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] + I*Sinh[a/(2*b)]))/(15*b^2*(Cos[Arc
Sin[1 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2]))

Rule 4906

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[-Sqrt[-2*c*d*x^2 - d^2*x^4]/(b*d*x*S
qrt[a + b*ArcSin[c + d*x^2]]), x] + (-Simp[(c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*(FresnelC[Sq
rt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2])), x] +
 Simp[(c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])*(FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*
x^2]]]/(Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2])), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2,
 1]

Rule 4912

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*((a + b*ArcSin[c + d*x^2])^(n + 2)/(
4*b^2*(n + 1)*(n + 2))), x] + (-Dist[1/(4*b^2*(n + 1)*(n + 2)), Int[(a + b*ArcSin[c + d*x^2])^(n + 2), x], x]
+ Simp[Sqrt[-2*c*d*x^2 - d^2*x^4]*((a + b*ArcSin[c + d*x^2])^(n + 1)/(2*b*d*(n + 1)*x)), x]) /; FreeQ[{a, b, c
, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{7/2}} \, dx &=-\frac {\sqrt {2 i d x^2+d^2 x^4}}{5 b d x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2}}-\frac {x}{15 b^2 \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}+\frac {\int \frac {1}{\left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}} \, dx}{15 b^2}\\ &=-\frac {\sqrt {2 i d x^2+d^2 x^4}}{5 b d x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2}}-\frac {x}{15 b^2 \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}-\frac {\sqrt {2 i d x^2+d^2 x^4}}{15 b^3 d x \sqrt {a+i b \sin ^{-1}\left (1-i d x^2\right )}}-\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x C\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )-i \sinh \left (\frac {a}{2 b}\right )\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}+\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x S\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )+i \sinh \left (\frac {a}{2 b}\right )\right )}{15 b^2 \left (\cos \left (\frac {1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 365, normalized size = 0.94 \begin {gather*} \frac {\frac {-\frac {3 b \sqrt {d x^2 \left (2 i+d x^2\right )}}{d}-x^2 \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )+\frac {\sqrt {d x^2 \left (2 i+d x^2\right )} \left (-i a+b \text {ArcSin}\left (1-i d x^2\right )\right )^2}{b d}}{x \left (a+i b \text {ArcSin}\left (1-i d x^2\right )\right )^{5/2}}-\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x \text {FresnelC}\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )-i \sinh \left (\frac {a}{2 b}\right )\right )}{\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )}+\frac {\left (-\frac {i}{b}\right )^{3/2} \sqrt {\pi } x S\left (\frac {\sqrt {-\frac {i}{b}} \sqrt {a+i b \text {ArcSin}\left (1-i d x^2\right )}}{\sqrt {\pi }}\right ) \left (\cosh \left (\frac {a}{2 b}\right )+i \sinh \left (\frac {a}{2 b}\right )\right )}{\cos \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )-\sin \left (\frac {1}{2} \text {ArcSin}\left (1-i d x^2\right )\right )}}{15 b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*b*ArcSin[1 - I*d*x^2])^(-7/2),x]

[Out]

(((-3*b*Sqrt[d*x^2*(2*I + d*x^2)])/d - x^2*(a + I*b*ArcSin[1 - I*d*x^2]) + (Sqrt[d*x^2*(2*I + d*x^2)]*((-I)*a
+ b*ArcSin[1 - I*d*x^2])^2)/(b*d))/(x*(a + I*b*ArcSin[1 - I*d*x^2])^(5/2)) - (((-I)/b)^(3/2)*Sqrt[Pi]*x*Fresne
lC[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] - I*Sinh[a/(2*b)]))/(Cos[ArcSin[1
 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2]) + (((-I)/b)^(3/2)*Sqrt[Pi]*x*FresnelS[(Sqrt[(-I)/b]*Sqrt[a + I*b*
ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] + I*Sinh[a/(2*b)]))/(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1
- I*d*x^2]/2]))/(15*b^2)

________________________________________________________________________________________

Maple [F]
time = 0.93, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (a +b \arcsinh \left (d \,x^{2}+i\right )\right )^{\frac {7}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsinh(I+d*x^2))^(7/2),x)

[Out]

int(1/(a+b*arcsinh(I+d*x^2))^(7/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(I+d*x^2))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(d*x^2 + I) + a)^(-7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(I+d*x^2))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asinh(I+d*x**2))**(7/2),x)

[Out]

Exception raised: TypeError >> Invalid comparison of non-real I

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(I+d*x^2))^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (a+b\,\mathrm {asinh}\left (d\,x^2+1{}\mathrm {i}\right )\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*asinh(d*x^2 + 1i))^(7/2),x)

[Out]

int(1/(a + b*asinh(d*x^2 + 1i))^(7/2), x)

________________________________________________________________________________________