3.1.36 \(\int (f+g x) \sqrt {d+c^2 d x^2} (a+b \sinh ^{-1}(c x)) \, dx\) [36]

Optimal. Leaf size=227 \[ -\frac {b g x \sqrt {d+c^2 d x^2}}{3 c \sqrt {1+c^2 x^2}}-\frac {b c f x^2 \sqrt {d+c^2 d x^2}}{4 \sqrt {1+c^2 x^2}}-\frac {b c g x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+\frac {1}{2} f x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {g \left (1+c^2 x^2\right ) \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2}+\frac {f \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt {1+c^2 x^2}} \]

[Out]

1/2*f*x*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)+1/3*g*(c^2*x^2+1)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c^2-1/
3*b*g*x*(c^2*d*x^2+d)^(1/2)/c/(c^2*x^2+1)^(1/2)-1/4*b*c*f*x^2*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-1/9*b*c*g*
x^3*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+1/4*f*(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/b/c/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {5845, 5838, 5785, 5783, 30, 5798} \begin {gather*} \frac {1}{2} f x \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )+\frac {f \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt {c^2 x^2+1}}+\frac {g \left (c^2 x^2+1\right ) \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2}-\frac {b c f x^2 \sqrt {c^2 d x^2+d}}{4 \sqrt {c^2 x^2+1}}-\frac {b g x \sqrt {c^2 d x^2+d}}{3 c \sqrt {c^2 x^2+1}}-\frac {b c g x^3 \sqrt {c^2 d x^2+d}}{9 \sqrt {c^2 x^2+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(f + g*x)*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-1/3*(b*g*x*Sqrt[d + c^2*d*x^2])/(c*Sqrt[1 + c^2*x^2]) - (b*c*f*x^2*Sqrt[d + c^2*d*x^2])/(4*Sqrt[1 + c^2*x^2])
 - (b*c*g*x^3*Sqrt[d + c^2*d*x^2])/(9*Sqrt[1 + c^2*x^2]) + (f*x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/2 +
(g*(1 + c^2*x^2)*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(3*c^2) + (f*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x
])^2)/(4*b*c*Sqrt[1 + c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5783

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]

Rule 5785

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcSinh[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(a + b*ArcSinh[c*x])^
n/Sqrt[1 + c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[x*(a + b*ArcSinh[c*x
])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 5838

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g
}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p,
-1]) || GtQ[p, 0] || EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))

Rule 5845

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] /;
 FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p - 1/2] &&  !GtQ[d, 0]

Rubi steps

\begin {align*} \int (f+g x) \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=\frac {\sqrt {d+c^2 d x^2} \int (f+g x) \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{\sqrt {1+c^2 x^2}}\\ &=\frac {\sqrt {d+c^2 d x^2} \int \left (f \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )+g x \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )\right ) \, dx}{\sqrt {1+c^2 x^2}}\\ &=\frac {\left (f \sqrt {d+c^2 d x^2}\right ) \int \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{\sqrt {1+c^2 x^2}}+\frac {\left (g \sqrt {d+c^2 d x^2}\right ) \int x \sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{\sqrt {1+c^2 x^2}}\\ &=\frac {1}{2} f x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {g \left (1+c^2 x^2\right ) \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2}+\frac {\left (f \sqrt {d+c^2 d x^2}\right ) \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{2 \sqrt {1+c^2 x^2}}-\frac {\left (b c f \sqrt {d+c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {1+c^2 x^2}}-\frac {\left (b g \sqrt {d+c^2 d x^2}\right ) \int \left (1+c^2 x^2\right ) \, dx}{3 c \sqrt {1+c^2 x^2}}\\ &=-\frac {b g x \sqrt {d+c^2 d x^2}}{3 c \sqrt {1+c^2 x^2}}-\frac {b c f x^2 \sqrt {d+c^2 d x^2}}{4 \sqrt {1+c^2 x^2}}-\frac {b c g x^3 \sqrt {d+c^2 d x^2}}{9 \sqrt {1+c^2 x^2}}+\frac {1}{2} f x \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {g \left (1+c^2 x^2\right ) \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2}+\frac {f \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.80, size = 208, normalized size = 0.92 \begin {gather*} \frac {1}{6} a \sqrt {d+c^2 d x^2} \left (\frac {2 g}{c^2}+x (3 f+2 g x)\right )-\frac {b g \sqrt {d+c^2 d x^2} \left (3 c x+c^3 x^3-3 \left (1+c^2 x^2\right )^{3/2} \sinh ^{-1}(c x)\right )}{9 c^2 \sqrt {1+c^2 x^2}}+\frac {a \sqrt {d} f \log \left (c d x+\sqrt {d} \sqrt {d+c^2 d x^2}\right )}{2 c}+\frac {b f \sqrt {d+c^2 d x^2} \left (-\cosh \left (2 \sinh ^{-1}(c x)\right )+2 \sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)+\sinh \left (2 \sinh ^{-1}(c x)\right )\right )\right )}{8 c \sqrt {1+c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(f + g*x)*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

(a*Sqrt[d + c^2*d*x^2]*((2*g)/c^2 + x*(3*f + 2*g*x)))/6 - (b*g*Sqrt[d + c^2*d*x^2]*(3*c*x + c^3*x^3 - 3*(1 + c
^2*x^2)^(3/2)*ArcSinh[c*x]))/(9*c^2*Sqrt[1 + c^2*x^2]) + (a*Sqrt[d]*f*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*d*x^2]]
)/(2*c) + (b*f*Sqrt[d + c^2*d*x^2]*(-Cosh[2*ArcSinh[c*x]] + 2*ArcSinh[c*x]*(ArcSinh[c*x] + Sinh[2*ArcSinh[c*x]
])))/(8*c*Sqrt[1 + c^2*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(581\) vs. \(2(195)=390\).
time = 3.44, size = 582, normalized size = 2.56

method result size
default \(\frac {a g \left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+\frac {a f x \sqrt {c^{2} d \,x^{2}+d}}{2}+\frac {a f d \ln \left (\frac {x \,c^{2} d}{\sqrt {c^{2} d}}+\sqrt {c^{2} d \,x^{2}+d}\right )}{2 \sqrt {c^{2} d}}+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, f \arcsinh \left (c x \right )^{2}}{4 \sqrt {c^{2} x^{2}+1}\, c}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}+4 \sqrt {c^{2} x^{2}+1}\, x^{3} c^{3}+5 c^{2} x^{2}+3 \sqrt {c^{2} x^{2}+1}\, c x +1\right ) g \left (-1+3 \arcsinh \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 c^{3} x^{3}+2 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+2 c x +\sqrt {c^{2} x^{2}+1}\right ) f \left (2 \arcsinh \left (c x \right )-1\right )}{16 c \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+\sqrt {c^{2} x^{2}+1}\, c x +1\right ) g \left (\arcsinh \left (c x \right )-1\right )}{8 c^{2} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-\sqrt {c^{2} x^{2}+1}\, c x +1\right ) g \left (\arcsinh \left (c x \right )+1\right )}{8 c^{2} \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (2 c^{3} x^{3}-2 c^{2} x^{2} \sqrt {c^{2} x^{2}+1}+2 c x -\sqrt {c^{2} x^{2}+1}\right ) f \left (2 \arcsinh \left (c x \right )+1\right )}{16 c \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}-4 \sqrt {c^{2} x^{2}+1}\, x^{3} c^{3}+5 c^{2} x^{2}-3 \sqrt {c^{2} x^{2}+1}\, c x +1\right ) g \left (1+3 \arcsinh \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}+1\right )}\right )\) \(582\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*a*g*(c^2*d*x^2+d)^(3/2)/c^2/d+1/2*a*f*x*(c^2*d*x^2+d)^(1/2)+1/2*a*f*d*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+
d)^(1/2))/(c^2*d)^(1/2)+b*(1/4*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c*f*arcsinh(c*x)^2+1/72*(d*(c^2*x^2+1))
^(1/2)*(4*c^4*x^4+4*(c^2*x^2+1)^(1/2)*x^3*c^3+5*c^2*x^2+3*(c^2*x^2+1)^(1/2)*c*x+1)*g*(-1+3*arcsinh(c*x))/c^2/(
c^2*x^2+1)+1/16*(d*(c^2*x^2+1))^(1/2)*(2*c^3*x^3+2*c^2*x^2*(c^2*x^2+1)^(1/2)+2*c*x+(c^2*x^2+1)^(1/2))*f*(2*arc
sinh(c*x)-1)/c/(c^2*x^2+1)+1/8*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+(c^2*x^2+1)^(1/2)*c*x+1)*g*(arcsinh(c*x)-1)/c^2/
(c^2*x^2+1)+1/8*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2-(c^2*x^2+1)^(1/2)*c*x+1)*g*(arcsinh(c*x)+1)/c^2/(c^2*x^2+1)+1/1
6*(d*(c^2*x^2+1))^(1/2)*(2*c^3*x^3-2*c^2*x^2*(c^2*x^2+1)^(1/2)+2*c*x-(c^2*x^2+1)^(1/2))*f*(2*arcsinh(c*x)+1)/c
/(c^2*x^2+1)+1/72*(d*(c^2*x^2+1))^(1/2)*(4*c^4*x^4-4*(c^2*x^2+1)^(1/2)*x^3*c^3+5*c^2*x^2-3*(c^2*x^2+1)^(1/2)*c
*x+1)*g*(1+3*arcsinh(c*x))/c^2/(c^2*x^2+1))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(a*g*x + a*f + (b*g*x + b*f)*arcsinh(c*x)), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right ) \left (f + g x\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*asinh(c*x))*(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))*(f + g*x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (f+g\,x\right )\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {d\,c^2\,x^2+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f + g*x)*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2),x)

[Out]

int((f + g*x)*(a + b*asinh(c*x))*(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________