3.2.99 \(\int (c e+d e x)^{5/2} (a+b \cosh ^{-1}(c+d x)) \, dx\) [199]

Optimal. Leaf size=169 \[ -\frac {20 b e^2 \sqrt {-1+c+d x} \sqrt {e (c+d x)} \sqrt {1+c+d x}}{147 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {20 b e^{5/2} \sqrt {1-c-d x} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )\right |-1\right )}{147 d \sqrt {-1+c+d x}} \]

[Out]

2/7*(e*(d*x+c))^(7/2)*(a+b*arccosh(d*x+c))/d/e-20/147*b*e^(5/2)*EllipticF((e*(d*x+c))^(1/2)/e^(1/2),I)*(-d*x-c
+1)^(1/2)/d/(d*x+c-1)^(1/2)-4/49*b*(e*(d*x+c))^(5/2)*(d*x+c-1)^(1/2)*(d*x+c+1)^(1/2)/d-20/147*b*e^2*(d*x+c-1)^
(1/2)*(e*(d*x+c))^(1/2)*(d*x+c+1)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {5996, 5883, 104, 12, 118, 117} \begin {gather*} \frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {20 b e^{5/2} \sqrt {-c-d x+1} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )\right |-1\right )}{147 d \sqrt {c+d x-1}}-\frac {20 b e^2 \sqrt {c+d x-1} \sqrt {c+d x+1} \sqrt {e (c+d x)}}{147 d}-\frac {4 b \sqrt {c+d x-1} \sqrt {c+d x+1} (e (c+d x))^{5/2}}{49 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^(5/2)*(a + b*ArcCosh[c + d*x]),x]

[Out]

(-20*b*e^2*Sqrt[-1 + c + d*x]*Sqrt[e*(c + d*x)]*Sqrt[1 + c + d*x])/(147*d) - (4*b*Sqrt[-1 + c + d*x]*(e*(c + d
*x))^(5/2)*Sqrt[1 + c + d*x])/(49*d) + (2*(e*(c + d*x))^(7/2)*(a + b*ArcCosh[c + d*x]))/(7*d*e) - (20*b*e^(5/2
)*Sqrt[1 - c - d*x]*EllipticF[ArcSin[Sqrt[e*(c + d*x)]/Sqrt[e]], -1])/(147*d*Sqrt[-1 + c + d*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])

Rule 118

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[1 + d*(x/c)]*
(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])), Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 5883

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcC
osh[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt
[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5996

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rubi steps

\begin {align*} \int (c e+d e x)^{5/2} \left (a+b \cosh ^{-1}(c+d x)\right ) \, dx &=\frac {\text {Subst}\left (\int (e x)^{5/2} \left (a+b \cosh ^{-1}(x)\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {(2 b) \text {Subst}\left (\int \frac {(e x)^{7/2}}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{7 d e}\\ &=-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {(4 b) \text {Subst}\left (\int \frac {5 e^2 (e x)^{3/2}}{2 \sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{49 d e}\\ &=-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {(10 b e) \text {Subst}\left (\int \frac {(e x)^{3/2}}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,c+d x\right )}{49 d}\\ &=-\frac {20 b e^2 \sqrt {-1+c+d x} \sqrt {e (c+d x)} \sqrt {1+c+d x}}{147 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {(20 b e) \text {Subst}\left (\int \frac {e^2}{2 \sqrt {-1+x} \sqrt {e x} \sqrt {1+x}} \, dx,x,c+d x\right )}{147 d}\\ &=-\frac {20 b e^2 \sqrt {-1+c+d x} \sqrt {e (c+d x)} \sqrt {1+c+d x}}{147 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {\left (10 b e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {e x} \sqrt {1+x}} \, dx,x,c+d x\right )}{147 d}\\ &=-\frac {20 b e^2 \sqrt {-1+c+d x} \sqrt {e (c+d x)} \sqrt {1+c+d x}}{147 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {\left (10 b e^3 \sqrt {1-c-d x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {e x} \sqrt {1+x}} \, dx,x,c+d x\right )}{147 d \sqrt {-1+c+d x}}\\ &=-\frac {20 b e^2 \sqrt {-1+c+d x} \sqrt {e (c+d x)} \sqrt {1+c+d x}}{147 d}-\frac {4 b \sqrt {-1+c+d x} (e (c+d x))^{5/2} \sqrt {1+c+d x}}{49 d}+\frac {2 (e (c+d x))^{7/2} \left (a+b \cosh ^{-1}(c+d x)\right )}{7 d e}-\frac {20 b e^{5/2} \sqrt {1-c-d x} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {e (c+d x)}}{\sqrt {e}}\right )\right |-1\right )}{147 d \sqrt {-1+c+d x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.18, size = 180, normalized size = 1.07 \begin {gather*} \frac {2 (e (c+d x))^{5/2} \left (10 b-4 b (c+d x)^2-6 b (c+d x)^4+21 a \sqrt {-1+c+d x} (c+d x)^3 \sqrt {1+c+d x}+21 b \sqrt {-1+c+d x} (c+d x)^3 \sqrt {1+c+d x} \cosh ^{-1}(c+d x)-10 b \sqrt {1-(c+d x)^2} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};(c+d x)^2\right )\right )}{147 d \sqrt {\frac {-1+c+d x}{c+d x}} (c+d x)^{5/2} \sqrt {1+c+d x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^(5/2)*(a + b*ArcCosh[c + d*x]),x]

[Out]

(2*(e*(c + d*x))^(5/2)*(10*b - 4*b*(c + d*x)^2 - 6*b*(c + d*x)^4 + 21*a*Sqrt[-1 + c + d*x]*(c + d*x)^3*Sqrt[1
+ c + d*x] + 21*b*Sqrt[-1 + c + d*x]*(c + d*x)^3*Sqrt[1 + c + d*x]*ArcCosh[c + d*x] - 10*b*Sqrt[1 - (c + d*x)^
2]*Hypergeometric2F1[1/4, 1/2, 5/4, (c + d*x)^2]))/(147*d*Sqrt[(-1 + c + d*x)/(c + d*x)]*(c + d*x)^(5/2)*Sqrt[
1 + c + d*x])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 218, normalized size = 1.29

method result size
derivativedivides \(\frac {\frac {2 \left (d e x +c e \right )^{\frac {7}{2}} a}{7}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {7}{2}} \mathrm {arccosh}\left (\frac {d e x +c e}{e}\right )}{7}-\frac {2 \left (3 \sqrt {-\frac {1}{e}}\, \left (d e x +c e \right )^{\frac {9}{2}}+2 \sqrt {-\frac {1}{e}}\, e^{2} \left (d e x +c e \right )^{\frac {5}{2}}+5 e^{4} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \EllipticF \left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-5 \sqrt {-\frac {1}{e}}\, e^{4} \sqrt {d e x +c e}\right )}{147 e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(218\)
default \(\frac {\frac {2 \left (d e x +c e \right )^{\frac {7}{2}} a}{7}+2 b \left (\frac {\left (d e x +c e \right )^{\frac {7}{2}} \mathrm {arccosh}\left (\frac {d e x +c e}{e}\right )}{7}-\frac {2 \left (3 \sqrt {-\frac {1}{e}}\, \left (d e x +c e \right )^{\frac {9}{2}}+2 \sqrt {-\frac {1}{e}}\, e^{2} \left (d e x +c e \right )^{\frac {5}{2}}+5 e^{4} \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {\frac {-d e x -c e +e}{e}}\, \EllipticF \left (\sqrt {d e x +c e}\, \sqrt {-\frac {1}{e}}, i\right )-5 \sqrt {-\frac {1}{e}}\, e^{4} \sqrt {d e x +c e}\right )}{147 e \sqrt {-\frac {1}{e}}\, \sqrt {\frac {d e x +c e +e}{e}}\, \sqrt {-\frac {-d e x -c e +e}{e}}}\right )}{d e}\) \(218\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^(5/2)*(a+b*arccosh(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2/d/e*(1/7*(d*e*x+c*e)^(7/2)*a+b*(1/7*(d*e*x+c*e)^(7/2)*arccosh((d*e*x+c*e)/e)-2/147/e*(3*(-1/e)^(1/2)*(d*e*x+
c*e)^(9/2)+2*(-1/e)^(1/2)*e^2*(d*e*x+c*e)^(5/2)+5*e^4*((d*e*x+c*e+e)/e)^(1/2)*((-d*e*x-c*e+e)/e)^(1/2)*Ellipti
cF((d*e*x+c*e)^(1/2)*(-1/e)^(1/2),I)-5*(-1/e)^(1/2)*e^4*(d*e*x+c*e)^(1/2))/(-1/e)^(1/2)/((d*e*x+c*e+e)/e)^(1/2
)/(-(-d*e*x-c*e+e)/e)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(5/2)*(a+b*arccosh(d*x+c)),x, algorithm="maxima")

[Out]

2/7*(d*x*e + c*e)^(7/2)*a*e^(-1)/d + 1/147*(42*(d^3*x^3*e^(5/2) + 3*c*d^2*x^2*e^(5/2) + 3*c^2*d*x*e^(5/2) + c^
3*e^(5/2))*sqrt(d*x + c)*log(d*x + sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + c)/d + (21*I*(log(I*sqrt(d*x + c) + 1
) - log(-I*sqrt(d*x + c) + 1))*e^(5/2) + 21*e^(5/2)*log(sqrt(d*x + c) + 1) - 21*e^(5/2)*log(sqrt(d*x + c) - 1)
 - 12*e^(7/2*log(d*x + c) + 5/2) - 28*e^(3/2*log(d*x + c) + 5/2))/d + 147*integrate(2/7*(d^3*x^3*e^(5/2) + 3*c
*d^2*x^2*e^(5/2) + 3*c^2*d*x*e^(5/2) + c^3*e^(5/2))*sqrt(d*x + c)/(d^3*x^3 + 3*c*d^2*x^2 + c^3 + (d^2*x^2 + 2*
c*d*x + c^2 - 1)*sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + (3*c^2*d - d)*x - c), x))*b

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 517, normalized size = 3.06 \begin {gather*} \frac {2 \, {\left (21 \, {\left ({\left (b d^{5} x^{3} + 3 \, b c d^{4} x^{2} + 3 \, b c^{2} d^{3} x + b c^{3} d^{2}\right )} \cosh \left (1\right )^{2} + 2 \, {\left (b d^{5} x^{3} + 3 \, b c d^{4} x^{2} + 3 \, b c^{2} d^{3} x + b c^{3} d^{2}\right )} \cosh \left (1\right ) \sinh \left (1\right ) + {\left (b d^{5} x^{3} + 3 \, b c d^{4} x^{2} + 3 \, b c^{2} d^{3} x + b c^{3} d^{2}\right )} \sinh \left (1\right )^{2}\right )} \sqrt {{\left (d x + c\right )} \cosh \left (1\right ) + {\left (d x + c\right )} \sinh \left (1\right )} \log \left (d x + c + \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1}\right ) - 10 \, \sqrt {d^{3} \cosh \left (1\right ) + d^{3} \sinh \left (1\right )} {\left (b \cosh \left (1\right )^{2} + 2 \, b \cosh \left (1\right ) \sinh \left (1\right ) + b \sinh \left (1\right )^{2}\right )} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right ) + {\left (21 \, {\left (a d^{5} x^{3} + 3 \, a c d^{4} x^{2} + 3 \, a c^{2} d^{3} x + a c^{3} d^{2}\right )} \cosh \left (1\right )^{2} + 42 \, {\left (a d^{5} x^{3} + 3 \, a c d^{4} x^{2} + 3 \, a c^{2} d^{3} x + a c^{3} d^{2}\right )} \cosh \left (1\right ) \sinh \left (1\right ) + 21 \, {\left (a d^{5} x^{3} + 3 \, a c d^{4} x^{2} + 3 \, a c^{2} d^{3} x + a c^{3} d^{2}\right )} \sinh \left (1\right )^{2} - 2 \, \sqrt {d^{2} x^{2} + 2 \, c d x + c^{2} - 1} {\left ({\left (3 \, b d^{4} x^{2} + 6 \, b c d^{3} x + {\left (3 \, b c^{2} + 5 \, b\right )} d^{2}\right )} \cosh \left (1\right )^{2} + 2 \, {\left (3 \, b d^{4} x^{2} + 6 \, b c d^{3} x + {\left (3 \, b c^{2} + 5 \, b\right )} d^{2}\right )} \cosh \left (1\right ) \sinh \left (1\right ) + {\left (3 \, b d^{4} x^{2} + 6 \, b c d^{3} x + {\left (3 \, b c^{2} + 5 \, b\right )} d^{2}\right )} \sinh \left (1\right )^{2}\right )}\right )} \sqrt {{\left (d x + c\right )} \cosh \left (1\right ) + {\left (d x + c\right )} \sinh \left (1\right )}\right )}}{147 \, d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(5/2)*(a+b*arccosh(d*x+c)),x, algorithm="fricas")

[Out]

2/147*(21*((b*d^5*x^3 + 3*b*c*d^4*x^2 + 3*b*c^2*d^3*x + b*c^3*d^2)*cosh(1)^2 + 2*(b*d^5*x^3 + 3*b*c*d^4*x^2 +
3*b*c^2*d^3*x + b*c^3*d^2)*cosh(1)*sinh(1) + (b*d^5*x^3 + 3*b*c*d^4*x^2 + 3*b*c^2*d^3*x + b*c^3*d^2)*sinh(1)^2
)*sqrt((d*x + c)*cosh(1) + (d*x + c)*sinh(1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)) - 10*sqrt(d^3*c
osh(1) + d^3*sinh(1))*(b*cosh(1)^2 + 2*b*cosh(1)*sinh(1) + b*sinh(1)^2)*weierstrassPInverse(4/d^2, 0, (d*x + c
)/d) + (21*(a*d^5*x^3 + 3*a*c*d^4*x^2 + 3*a*c^2*d^3*x + a*c^3*d^2)*cosh(1)^2 + 42*(a*d^5*x^3 + 3*a*c*d^4*x^2 +
 3*a*c^2*d^3*x + a*c^3*d^2)*cosh(1)*sinh(1) + 21*(a*d^5*x^3 + 3*a*c*d^4*x^2 + 3*a*c^2*d^3*x + a*c^3*d^2)*sinh(
1)^2 - 2*sqrt(d^2*x^2 + 2*c*d*x + c^2 - 1)*((3*b*d^4*x^2 + 6*b*c*d^3*x + (3*b*c^2 + 5*b)*d^2)*cosh(1)^2 + 2*(3
*b*d^4*x^2 + 6*b*c*d^3*x + (3*b*c^2 + 5*b)*d^2)*cosh(1)*sinh(1) + (3*b*d^4*x^2 + 6*b*c*d^3*x + (3*b*c^2 + 5*b)
*d^2)*sinh(1)^2))*sqrt((d*x + c)*cosh(1) + (d*x + c)*sinh(1)))/d^3

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**(5/2)*(a+b*acosh(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(5/2)*(a+b*arccosh(d*x+c)),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^(5/2)*(b*arccosh(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (c\,e+d\,e\,x\right )}^{5/2}\,\left (a+b\,\mathrm {acosh}\left (c+d\,x\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^(5/2)*(a + b*acosh(c + d*x)),x)

[Out]

int((c*e + d*e*x)^(5/2)*(a + b*acosh(c + d*x)), x)

________________________________________________________________________________________