3.1.14 \(\int (d+e x)^3 (a+b \cosh ^{-1}(c x)) \, dx\) [14]

Optimal. Leaf size=191 \[ -\frac {7 b d \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^2}{48 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^3}{16 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \left (4 d \left (19 c^2 d^2+16 e^2\right )+e \left (26 c^2 d^2+9 e^2\right ) x\right )}{96 c^3}-\frac {b \left (8 c^4 d^4+24 c^2 d^2 e^2+3 e^4\right ) \cosh ^{-1}(c x)}{32 c^4 e}+\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e} \]

[Out]

-1/32*b*(8*c^4*d^4+24*c^2*d^2*e^2+3*e^4)*arccosh(c*x)/c^4/e+1/4*(e*x+d)^4*(a+b*arccosh(c*x))/e-7/48*b*d*(e*x+d
)^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c-1/16*b*(e*x+d)^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c-1/96*b*(4*d*(19*c^2*d^2+16*e^
2)+e*(26*c^2*d^2+9*e^2)*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^3

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {5963, 102, 158, 152, 54} \begin {gather*} \frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}-\frac {b \left (8 c^4 d^4+24 c^2 d^2 e^2+3 e^4\right ) \cosh ^{-1}(c x)}{32 c^4 e}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \left (e x \left (26 c^2 d^2+9 e^2\right )+4 d \left (19 c^2 d^2+16 e^2\right )\right )}{96 c^3}-\frac {b \sqrt {c x-1} \sqrt {c x+1} (d+e x)^3}{16 c}-\frac {7 b d \sqrt {c x-1} \sqrt {c x+1} (d+e x)^2}{48 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3*(a + b*ArcCosh[c*x]),x]

[Out]

(-7*b*d*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(d + e*x)^2)/(48*c) - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(d + e*x)^3)/(16*c)
 - (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(4*d*(19*c^2*d^2 + 16*e^2) + e*(26*c^2*d^2 + 9*e^2)*x))/(96*c^3) - (b*(8*c^
4*d^4 + 24*c^2*d^2*e^2 + 3*e^4)*ArcCosh[c*x])/(32*c^4*e) + ((d + e*x)^4*(a + b*ArcCosh[c*x]))/(4*e)

Rule 54

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[b*(x/a)]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> Simp[(-(a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x))*(a + b*x)
^(m + 1)*((c + d*x)^(n + 1)/(b^2*d^2*(m + n + 2)*(m + n + 3))), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d
*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1
)*(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)
^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 158

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 5963

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*
((a + b*ArcCosh[c*x])^n/(e*(m + 1))), x] - Dist[b*c*(n/(e*(m + 1))), Int[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*x
])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int (d+e x)^3 \left (a+b \cosh ^{-1}(c x)\right ) \, dx &=\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}-\frac {(b c) \int \frac {(d+e x)^4}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{4 e}\\ &=-\frac {b \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^3}{16 c}+\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}-\frac {b \int \frac {(d+e x)^2 \left (4 c^2 d^2+3 e^2+7 c^2 d e x\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{16 c e}\\ &=-\frac {7 b d \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^2}{48 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^3}{16 c}+\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}-\frac {b \int \frac {(d+e x) \left (c^2 d \left (12 c^2 d^2+23 e^2\right )+c^2 e \left (26 c^2 d^2+9 e^2\right ) x\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{48 c^3 e}\\ &=-\frac {7 b d \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^2}{48 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^3}{16 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \left (4 d \left (19 c^2 d^2+16 e^2\right )+e \left (26 c^2 d^2+9 e^2\right ) x\right )}{96 c^3}+\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}-\frac {\left (b \left (8 c^4 d^4+24 c^2 d^2 e^2+3 e^4\right )\right ) \int \frac {1}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{32 c^3 e}\\ &=-\frac {7 b d \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^2}{48 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} (d+e x)^3}{16 c}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \left (4 d \left (19 c^2 d^2+16 e^2\right )+e \left (26 c^2 d^2+9 e^2\right ) x\right )}{96 c^3}-\frac {b \left (8 c^4 d^4+24 c^2 d^2 e^2+3 e^4\right ) \cosh ^{-1}(c x)}{32 c^4 e}+\frac {(d+e x)^4 \left (a+b \cosh ^{-1}(c x)\right )}{4 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 193, normalized size = 1.01 \begin {gather*} \frac {24 a c^4 x \left (4 d^3+6 d^2 e x+4 d e^2 x^2+e^3 x^3\right )-b c \sqrt {-1+c x} \sqrt {1+c x} \left (e^2 (64 d+9 e x)+c^2 \left (96 d^3+72 d^2 e x+32 d e^2 x^2+6 e^3 x^3\right )\right )+24 b c^4 x \left (4 d^3+6 d^2 e x+4 d e^2 x^2+e^3 x^3\right ) \cosh ^{-1}(c x)-9 b e \left (8 c^2 d^2+e^2\right ) \log \left (c x+\sqrt {-1+c x} \sqrt {1+c x}\right )}{96 c^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3*(a + b*ArcCosh[c*x]),x]

[Out]

(24*a*c^4*x*(4*d^3 + 6*d^2*e*x + 4*d*e^2*x^2 + e^3*x^3) - b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(e^2*(64*d + 9*e*x)
 + c^2*(96*d^3 + 72*d^2*e*x + 32*d*e^2*x^2 + 6*e^3*x^3)) + 24*b*c^4*x*(4*d^3 + 6*d^2*e*x + 4*d*e^2*x^2 + e^3*x
^3)*ArcCosh[c*x] - 9*b*e*(8*c^2*d^2 + e^2)*Log[c*x + Sqrt[-1 + c*x]*Sqrt[1 + c*x]])/(96*c^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(381\) vs. \(2(169)=338\).
time = 1.64, size = 382, normalized size = 2.00

method result size
derivativedivides \(\frac {\frac {\left (e c x +c d \right )^{4} a}{4 c^{3} e}+\frac {b c \,\mathrm {arccosh}\left (c x \right ) d^{4}}{4 e}+b \,\mathrm {arccosh}\left (c x \right ) d^{3} c x +\frac {3 b c e \,\mathrm {arccosh}\left (c x \right ) d^{2} x^{2}}{2}+b c \,e^{2} \mathrm {arccosh}\left (c x \right ) d \,x^{3}+\frac {b c \,e^{3} \mathrm {arccosh}\left (c x \right ) x^{4}}{4}-\frac {b c \sqrt {c x -1}\, \sqrt {c x +1}\, d^{4} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{4 e \sqrt {c^{2} x^{2}-1}}-b \sqrt {c x -1}\, \sqrt {c x +1}\, d^{3}-\frac {3 b e \sqrt {c x -1}\, \sqrt {c x +1}\, d^{2} x}{4}-\frac {b \,e^{2} \sqrt {c x -1}\, \sqrt {c x +1}\, d \,x^{2}}{3}-\frac {b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}{16}-\frac {3 b e \sqrt {c x -1}\, \sqrt {c x +1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{4 c \sqrt {c^{2} x^{2}-1}}-\frac {2 b \,e^{2} \sqrt {c x -1}\, \sqrt {c x +1}\, d}{3 c^{2}}-\frac {3 b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, x}{32 c^{2}}-\frac {3 b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{32 c^{3} \sqrt {c^{2} x^{2}-1}}}{c}\) \(382\)
default \(\frac {\frac {\left (e c x +c d \right )^{4} a}{4 c^{3} e}+\frac {b c \,\mathrm {arccosh}\left (c x \right ) d^{4}}{4 e}+b \,\mathrm {arccosh}\left (c x \right ) d^{3} c x +\frac {3 b c e \,\mathrm {arccosh}\left (c x \right ) d^{2} x^{2}}{2}+b c \,e^{2} \mathrm {arccosh}\left (c x \right ) d \,x^{3}+\frac {b c \,e^{3} \mathrm {arccosh}\left (c x \right ) x^{4}}{4}-\frac {b c \sqrt {c x -1}\, \sqrt {c x +1}\, d^{4} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{4 e \sqrt {c^{2} x^{2}-1}}-b \sqrt {c x -1}\, \sqrt {c x +1}\, d^{3}-\frac {3 b e \sqrt {c x -1}\, \sqrt {c x +1}\, d^{2} x}{4}-\frac {b \,e^{2} \sqrt {c x -1}\, \sqrt {c x +1}\, d \,x^{2}}{3}-\frac {b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}{16}-\frac {3 b e \sqrt {c x -1}\, \sqrt {c x +1}\, d^{2} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{4 c \sqrt {c^{2} x^{2}-1}}-\frac {2 b \,e^{2} \sqrt {c x -1}\, \sqrt {c x +1}\, d}{3 c^{2}}-\frac {3 b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, x}{32 c^{2}}-\frac {3 b \,e^{3} \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{32 c^{3} \sqrt {c^{2} x^{2}-1}}}{c}\) \(382\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(a+b*arccosh(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/c*(1/4*(c*e*x+c*d)^4*a/c^3/e+1/4*b*c/e*arccosh(c*x)*d^4+b*arccosh(c*x)*d^3*c*x+3/2*b*c*e*arccosh(c*x)*d^2*x^
2+b*c*e^2*arccosh(c*x)*d*x^3+1/4*b*c*e^3*arccosh(c*x)*x^4-1/4*b*c/e*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*x^2-1)^(1
/2)*d^4*ln(c*x+(c^2*x^2-1)^(1/2))-b*(c*x-1)^(1/2)*(c*x+1)^(1/2)*d^3-3/4*b*e*(c*x-1)^(1/2)*(c*x+1)^(1/2)*d^2*x-
1/3*b*e^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*d*x^2-1/16*b*e^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^3-3/4*b/c*e*(c*x-1)^(1/2)
*(c*x+1)^(1/2)/(c^2*x^2-1)^(1/2)*d^2*ln(c*x+(c^2*x^2-1)^(1/2))-2/3*b/c^2*e^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*d-3/3
2*b/c^2*e^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x-3/32*b/c^3*e^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*x^2-1)^(1/2)*ln(c*x+
(c^2*x^2-1)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 263, normalized size = 1.38 \begin {gather*} \frac {1}{4} \, a x^{4} e^{3} + a d x^{3} e^{2} + \frac {3}{2} \, a d^{2} x^{2} e + a d^{3} x + \frac {3}{4} \, {\left (2 \, x^{2} \operatorname {arcosh}\left (c x\right ) - c {\left (\frac {\sqrt {c^{2} x^{2} - 1} x}{c^{2}} + \frac {\log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{3}}\right )}\right )} b d^{2} e + \frac {{\left (c x \operatorname {arcosh}\left (c x\right ) - \sqrt {c^{2} x^{2} - 1}\right )} b d^{3}}{c} + \frac {1}{3} \, {\left (3 \, x^{3} \operatorname {arcosh}\left (c x\right ) - c {\left (\frac {\sqrt {c^{2} x^{2} - 1} x^{2}}{c^{2}} + \frac {2 \, \sqrt {c^{2} x^{2} - 1}}{c^{4}}\right )}\right )} b d e^{2} + \frac {1}{32} \, {\left (8 \, x^{4} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{2}} + \frac {3 \, \sqrt {c^{2} x^{2} - 1} x}{c^{4}} + \frac {3 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{5}}\right )} c\right )} b e^{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

1/4*a*x^4*e^3 + a*d*x^3*e^2 + 3/2*a*d^2*x^2*e + a*d^3*x + 3/4*(2*x^2*arccosh(c*x) - c*(sqrt(c^2*x^2 - 1)*x/c^2
 + log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^3))*b*d^2*e + (c*x*arccosh(c*x) - sqrt(c^2*x^2 - 1))*b*d^3/c + 1/3*(
3*x^3*arccosh(c*x) - c*(sqrt(c^2*x^2 - 1)*x^2/c^2 + 2*sqrt(c^2*x^2 - 1)/c^4))*b*d*e^2 + 1/32*(8*x^4*arccosh(c*
x) - (2*sqrt(c^2*x^2 - 1)*x^3/c^2 + 3*sqrt(c^2*x^2 - 1)*x/c^4 + 3*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^5)*c)
*b*e^3

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 526 vs. \(2 (167) = 334\).
time = 0.37, size = 526, normalized size = 2.75 \begin {gather*} \frac {24 \, a c^{4} x^{4} \cosh \left (1\right )^{3} + 24 \, a c^{4} x^{4} \sinh \left (1\right )^{3} + 96 \, a c^{4} d x^{3} \cosh \left (1\right )^{2} + 144 \, a c^{4} d^{2} x^{2} \cosh \left (1\right ) + 96 \, a c^{4} d^{3} x + 24 \, {\left (3 \, a c^{4} x^{4} \cosh \left (1\right ) + 4 \, a c^{4} d x^{3}\right )} \sinh \left (1\right )^{2} + 3 \, {\left (32 \, b c^{4} d x^{3} \cosh \left (1\right )^{2} + 32 \, b c^{4} d^{3} x + {\left (8 \, b c^{4} x^{4} - 3 \, b\right )} \cosh \left (1\right )^{3} + {\left (8 \, b c^{4} x^{4} - 3 \, b\right )} \sinh \left (1\right )^{3} + {\left (32 \, b c^{4} d x^{3} + 3 \, {\left (8 \, b c^{4} x^{4} - 3 \, b\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )^{2} + 24 \, {\left (2 \, b c^{4} d^{2} x^{2} - b c^{2} d^{2}\right )} \cosh \left (1\right ) + {\left (64 \, b c^{4} d x^{3} \cosh \left (1\right ) + 48 \, b c^{4} d^{2} x^{2} - 24 \, b c^{2} d^{2} + 3 \, {\left (8 \, b c^{4} x^{4} - 3 \, b\right )} \cosh \left (1\right )^{2}\right )} \sinh \left (1\right )\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + 24 \, {\left (3 \, a c^{4} x^{4} \cosh \left (1\right )^{2} + 8 \, a c^{4} d x^{3} \cosh \left (1\right ) + 6 \, a c^{4} d^{2} x^{2}\right )} \sinh \left (1\right ) - {\left (72 \, b c^{3} d^{2} x \cosh \left (1\right ) + 96 \, b c^{3} d^{3} + 3 \, {\left (2 \, b c^{3} x^{3} + 3 \, b c x\right )} \cosh \left (1\right )^{3} + 3 \, {\left (2 \, b c^{3} x^{3} + 3 \, b c x\right )} \sinh \left (1\right )^{3} + 32 \, {\left (b c^{3} d x^{2} + 2 \, b c d\right )} \cosh \left (1\right )^{2} + {\left (32 \, b c^{3} d x^{2} + 64 \, b c d + 9 \, {\left (2 \, b c^{3} x^{3} + 3 \, b c x\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )^{2} + {\left (72 \, b c^{3} d^{2} x + 9 \, {\left (2 \, b c^{3} x^{3} + 3 \, b c x\right )} \cosh \left (1\right )^{2} + 64 \, {\left (b c^{3} d x^{2} + 2 \, b c d\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )\right )} \sqrt {c^{2} x^{2} - 1}}{96 \, c^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

1/96*(24*a*c^4*x^4*cosh(1)^3 + 24*a*c^4*x^4*sinh(1)^3 + 96*a*c^4*d*x^3*cosh(1)^2 + 144*a*c^4*d^2*x^2*cosh(1) +
 96*a*c^4*d^3*x + 24*(3*a*c^4*x^4*cosh(1) + 4*a*c^4*d*x^3)*sinh(1)^2 + 3*(32*b*c^4*d*x^3*cosh(1)^2 + 32*b*c^4*
d^3*x + (8*b*c^4*x^4 - 3*b)*cosh(1)^3 + (8*b*c^4*x^4 - 3*b)*sinh(1)^3 + (32*b*c^4*d*x^3 + 3*(8*b*c^4*x^4 - 3*b
)*cosh(1))*sinh(1)^2 + 24*(2*b*c^4*d^2*x^2 - b*c^2*d^2)*cosh(1) + (64*b*c^4*d*x^3*cosh(1) + 48*b*c^4*d^2*x^2 -
 24*b*c^2*d^2 + 3*(8*b*c^4*x^4 - 3*b)*cosh(1)^2)*sinh(1))*log(c*x + sqrt(c^2*x^2 - 1)) + 24*(3*a*c^4*x^4*cosh(
1)^2 + 8*a*c^4*d*x^3*cosh(1) + 6*a*c^4*d^2*x^2)*sinh(1) - (72*b*c^3*d^2*x*cosh(1) + 96*b*c^3*d^3 + 3*(2*b*c^3*
x^3 + 3*b*c*x)*cosh(1)^3 + 3*(2*b*c^3*x^3 + 3*b*c*x)*sinh(1)^3 + 32*(b*c^3*d*x^2 + 2*b*c*d)*cosh(1)^2 + (32*b*
c^3*d*x^2 + 64*b*c*d + 9*(2*b*c^3*x^3 + 3*b*c*x)*cosh(1))*sinh(1)^2 + (72*b*c^3*d^2*x + 9*(2*b*c^3*x^3 + 3*b*c
*x)*cosh(1)^2 + 64*(b*c^3*d*x^2 + 2*b*c*d)*cosh(1))*sinh(1))*sqrt(c^2*x^2 - 1))/c^4

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.30, size = 323, normalized size = 1.69 \begin {gather*} \begin {cases} a d^{3} x + \frac {3 a d^{2} e x^{2}}{2} + a d e^{2} x^{3} + \frac {a e^{3} x^{4}}{4} + b d^{3} x \operatorname {acosh}{\left (c x \right )} + \frac {3 b d^{2} e x^{2} \operatorname {acosh}{\left (c x \right )}}{2} + b d e^{2} x^{3} \operatorname {acosh}{\left (c x \right )} + \frac {b e^{3} x^{4} \operatorname {acosh}{\left (c x \right )}}{4} - \frac {b d^{3} \sqrt {c^{2} x^{2} - 1}}{c} - \frac {3 b d^{2} e x \sqrt {c^{2} x^{2} - 1}}{4 c} - \frac {b d e^{2} x^{2} \sqrt {c^{2} x^{2} - 1}}{3 c} - \frac {b e^{3} x^{3} \sqrt {c^{2} x^{2} - 1}}{16 c} - \frac {3 b d^{2} e \operatorname {acosh}{\left (c x \right )}}{4 c^{2}} - \frac {2 b d e^{2} \sqrt {c^{2} x^{2} - 1}}{3 c^{3}} - \frac {3 b e^{3} x \sqrt {c^{2} x^{2} - 1}}{32 c^{3}} - \frac {3 b e^{3} \operatorname {acosh}{\left (c x \right )}}{32 c^{4}} & \text {for}\: c \neq 0 \\\left (a + \frac {i \pi b}{2}\right ) \left (d^{3} x + \frac {3 d^{2} e x^{2}}{2} + d e^{2} x^{3} + \frac {e^{3} x^{4}}{4}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(a+b*acosh(c*x)),x)

[Out]

Piecewise((a*d**3*x + 3*a*d**2*e*x**2/2 + a*d*e**2*x**3 + a*e**3*x**4/4 + b*d**3*x*acosh(c*x) + 3*b*d**2*e*x**
2*acosh(c*x)/2 + b*d*e**2*x**3*acosh(c*x) + b*e**3*x**4*acosh(c*x)/4 - b*d**3*sqrt(c**2*x**2 - 1)/c - 3*b*d**2
*e*x*sqrt(c**2*x**2 - 1)/(4*c) - b*d*e**2*x**2*sqrt(c**2*x**2 - 1)/(3*c) - b*e**3*x**3*sqrt(c**2*x**2 - 1)/(16
*c) - 3*b*d**2*e*acosh(c*x)/(4*c**2) - 2*b*d*e**2*sqrt(c**2*x**2 - 1)/(3*c**3) - 3*b*e**3*x*sqrt(c**2*x**2 - 1
)/(32*c**3) - 3*b*e**3*acosh(c*x)/(32*c**4), Ne(c, 0)), ((a + I*pi*b/2)*(d**3*x + 3*d**2*e*x**2/2 + d*e**2*x**
3 + e**3*x**4/4), True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d+e\,x\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))*(d + e*x)^3,x)

[Out]

int((a + b*acosh(c*x))*(d + e*x)^3, x)

________________________________________________________________________________________