3.10.76 \(\int \frac {e^{\tanh ^{-1}(a x)} x^6}{(c-a^2 c x^2)^{5/2}} \, dx\) [976]

Optimal. Leaf size=312 \[ -\frac {x \sqrt {1-a^2 x^2}}{a^6 c^2 \sqrt {c-a^2 c x^2}}-\frac {x^2 \sqrt {1-a^2 x^2}}{2 a^5 c^2 \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (1-a x)^2 \sqrt {c-a^2 c x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{4 a^7 c^2 (1-a x) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (1+a x) \sqrt {c-a^2 c x^2}}-\frac {39 \sqrt {1-a^2 x^2} \log (1-a x)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}}-\frac {9 \sqrt {1-a^2 x^2} \log (1+a x)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}} \]

[Out]

-x*(-a^2*x^2+1)^(1/2)/a^6/c^2/(-a^2*c*x^2+c)^(1/2)-1/2*x^2*(-a^2*x^2+1)^(1/2)/a^5/c^2/(-a^2*c*x^2+c)^(1/2)+1/8
*(-a^2*x^2+1)^(1/2)/a^7/c^2/(-a*x+1)^2/(-a^2*c*x^2+c)^(1/2)-5/4*(-a^2*x^2+1)^(1/2)/a^7/c^2/(-a*x+1)/(-a^2*c*x^
2+c)^(1/2)-1/8*(-a^2*x^2+1)^(1/2)/a^7/c^2/(a*x+1)/(-a^2*c*x^2+c)^(1/2)-39/16*ln(-a*x+1)*(-a^2*x^2+1)^(1/2)/a^7
/c^2/(-a^2*c*x^2+c)^(1/2)-9/16*ln(a*x+1)*(-a^2*x^2+1)^(1/2)/a^7/c^2/(-a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6288, 6285, 90} \begin {gather*} -\frac {5 \sqrt {1-a^2 x^2}}{4 a^7 c^2 (1-a x) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (a x+1) \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (1-a x)^2 \sqrt {c-a^2 c x^2}}-\frac {39 \sqrt {1-a^2 x^2} \log (1-a x)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}}-\frac {9 \sqrt {1-a^2 x^2} \log (a x+1)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}}-\frac {x \sqrt {1-a^2 x^2}}{a^6 c^2 \sqrt {c-a^2 c x^2}}-\frac {x^2 \sqrt {1-a^2 x^2}}{2 a^5 c^2 \sqrt {c-a^2 c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*x^6)/(c - a^2*c*x^2)^(5/2),x]

[Out]

-((x*Sqrt[1 - a^2*x^2])/(a^6*c^2*Sqrt[c - a^2*c*x^2])) - (x^2*Sqrt[1 - a^2*x^2])/(2*a^5*c^2*Sqrt[c - a^2*c*x^2
]) + Sqrt[1 - a^2*x^2]/(8*a^7*c^2*(1 - a*x)^2*Sqrt[c - a^2*c*x^2]) - (5*Sqrt[1 - a^2*x^2])/(4*a^7*c^2*(1 - a*x
)*Sqrt[c - a^2*c*x^2]) - Sqrt[1 - a^2*x^2]/(8*a^7*c^2*(1 + a*x)*Sqrt[c - a^2*c*x^2]) - (39*Sqrt[1 - a^2*x^2]*L
og[1 - a*x])/(16*a^7*c^2*Sqrt[c - a^2*c*x^2]) - (9*Sqrt[1 - a^2*x^2]*Log[1 + a*x])/(16*a^7*c^2*Sqrt[c - a^2*c*
x^2])

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6285

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6288

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c +
d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]), Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)} x^6}{\left (c-a^2 c x^2\right )^{5/2}} \, dx &=\frac {\sqrt {1-a^2 x^2} \int \frac {e^{\tanh ^{-1}(a x)} x^6}{\left (1-a^2 x^2\right )^{5/2}} \, dx}{c^2 \sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \int \frac {x^6}{(1-a x)^3 (1+a x)^2} \, dx}{c^2 \sqrt {c-a^2 c x^2}}\\ &=\frac {\sqrt {1-a^2 x^2} \int \left (-\frac {1}{a^6}-\frac {x}{a^5}-\frac {1}{4 a^6 (-1+a x)^3}-\frac {5}{4 a^6 (-1+a x)^2}-\frac {39}{16 a^6 (-1+a x)}+\frac {1}{8 a^6 (1+a x)^2}-\frac {9}{16 a^6 (1+a x)}\right ) \, dx}{c^2 \sqrt {c-a^2 c x^2}}\\ &=-\frac {x \sqrt {1-a^2 x^2}}{a^6 c^2 \sqrt {c-a^2 c x^2}}-\frac {x^2 \sqrt {1-a^2 x^2}}{2 a^5 c^2 \sqrt {c-a^2 c x^2}}+\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (1-a x)^2 \sqrt {c-a^2 c x^2}}-\frac {5 \sqrt {1-a^2 x^2}}{4 a^7 c^2 (1-a x) \sqrt {c-a^2 c x^2}}-\frac {\sqrt {1-a^2 x^2}}{8 a^7 c^2 (1+a x) \sqrt {c-a^2 c x^2}}-\frac {39 \sqrt {1-a^2 x^2} \log (1-a x)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}}-\frac {9 \sqrt {1-a^2 x^2} \log (1+a x)}{16 a^7 c^2 \sqrt {c-a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 97, normalized size = 0.31 \begin {gather*} \frac {\sqrt {1-a^2 x^2} \left (2 \left (-8 a x-4 a^2 x^2+\frac {1}{(-1+a x)^2}+\frac {10}{-1+a x}-\frac {1}{1+a x}\right )-39 \log (1-a x)-9 \log (1+a x)\right )}{16 a^7 c^2 \sqrt {c-a^2 c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*x^6)/(c - a^2*c*x^2)^(5/2),x]

[Out]

(Sqrt[1 - a^2*x^2]*(2*(-8*a*x - 4*a^2*x^2 + (-1 + a*x)^(-2) + 10/(-1 + a*x) - (1 + a*x)^(-1)) - 39*Log[1 - a*x
] - 9*Log[1 + a*x]))/(16*a^7*c^2*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 190, normalized size = 0.61

method result size
default \(\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a^{2} x^{2}-1\right )}\, \left (8 x^{5} a^{5}+8 a^{4} x^{4}+9 \ln \left (a x +1\right ) a^{3} x^{3}+39 \ln \left (a x -1\right ) a^{3} x^{3}-24 a^{3} x^{3}-9 \ln \left (a x +1\right ) a^{2} x^{2}-39 \ln \left (a x -1\right ) a^{2} x^{2}-26 a^{2} x^{2}-9 \ln \left (a x +1\right ) a x -39 \ln \left (a x -1\right ) a x +10 a x +9 \ln \left (a x +1\right )+39 \ln \left (a x -1\right )+20\right )}{16 \left (a^{2} x^{2}-1\right ) c^{3} a^{7} \left (a x +1\right ) \left (a x -1\right )^{2}}\) \(190\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^6/(-a^2*c*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/16*(-a^2*x^2+1)^(1/2)*(-c*(a^2*x^2-1))^(1/2)*(8*x^5*a^5+8*a^4*x^4+9*ln(a*x+1)*a^3*x^3+39*ln(a*x-1)*a^3*x^3-2
4*a^3*x^3-9*ln(a*x+1)*a^2*x^2-39*ln(a*x-1)*a^2*x^2-26*a^2*x^2-9*ln(a*x+1)*a*x-39*ln(a*x-1)*a*x+10*a*x+9*ln(a*x
+1)+39*ln(a*x-1)+20)/(a^2*x^2-1)/c^3/a^7/(a*x+1)/(a*x-1)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^6/(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)*x^6/((-a^2*c*x^2 + c)^(5/2)*sqrt(-a^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^6/(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^6/(a^7*c^3*x^7 - a^6*c^3*x^6 - 3*a^5*c^3*x^5 + 3*a^4*c^3*x^
4 + 3*a^3*c^3*x^3 - 3*a^2*c^3*x^2 - a*c^3*x + c^3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{6} \left (a x + 1\right )}{\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**6/(-a**2*c*x**2+c)**(5/2),x)

[Out]

Integral(x**6*(a*x + 1)/(sqrt(-(a*x - 1)*(a*x + 1))*(-c*(a*x - 1)*(a*x + 1))**(5/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^6/(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*x + 1)*x^6/((-a^2*c*x^2 + c)^(5/2)*sqrt(-a^2*x^2 + 1)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^6\,\left (a\,x+1\right )}{{\left (c-a^2\,c\,x^2\right )}^{5/2}\,\sqrt {1-a^2\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^6*(a*x + 1))/((c - a^2*c*x^2)^(5/2)*(1 - a^2*x^2)^(1/2)),x)

[Out]

int((x^6*(a*x + 1))/((c - a^2*c*x^2)^(5/2)*(1 - a^2*x^2)^(1/2)), x)

________________________________________________________________________________________