3.12.31 \(\int e^{2 \tanh ^{-1}(a x)} x^m (c-a^2 c x^2)^{5/2} \, dx\) [1131]

Optimal. Leaf size=176 \[ -\frac {x^{1+m} \left (c-a^2 c x^2\right )^{5/2}}{6+m}+\frac {c^2 (7+2 m) x^{1+m} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{(1+m) (6+m) \sqrt {1-a^2 x^2}}+\frac {2 a c^2 x^{2+m} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{(2+m) \sqrt {1-a^2 x^2}} \]

[Out]

-x^(1+m)*(-a^2*c*x^2+c)^(5/2)/(6+m)+c^2*(7+2*m)*x^(1+m)*hypergeom([-3/2, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)*(-a^2
*c*x^2+c)^(1/2)/(m^2+7*m+6)/(-a^2*x^2+1)^(1/2)+2*a*c^2*x^(2+m)*hypergeom([-3/2, 1+1/2*m],[2+1/2*m],a^2*x^2)*(-
a^2*c*x^2+c)^(1/2)/(2+m)/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {6286, 1823, 822, 372, 371} \begin {gather*} \frac {c^2 (2 m+7) x^{m+1} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {m+1}{2};\frac {m+3}{2};a^2 x^2\right )}{(m+1) (m+6) \sqrt {1-a^2 x^2}}+\frac {2 a c^2 x^{m+2} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {m+2}{2};\frac {m+4}{2};a^2 x^2\right )}{(m+2) \sqrt {1-a^2 x^2}}-\frac {x^{m+1} \left (c-a^2 c x^2\right )^{5/2}}{m+6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])*x^m*(c - a^2*c*x^2)^(5/2),x]

[Out]

-((x^(1 + m)*(c - a^2*c*x^2)^(5/2))/(6 + m)) + (c^2*(7 + 2*m)*x^(1 + m)*Sqrt[c - a^2*c*x^2]*Hypergeometric2F1[
-3/2, (1 + m)/2, (3 + m)/2, a^2*x^2])/((1 + m)*(6 + m)*Sqrt[1 - a^2*x^2]) + (2*a*c^2*x^(2 + m)*Sqrt[c - a^2*c*
x^2]*Hypergeometric2F1[-3/2, (2 + m)/2, (4 + m)/2, a^2*x^2])/((2 + m)*Sqrt[1 - a^2*x^2])

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 822

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 1823

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 6286

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^(n/2), Int[x^m*(c
 + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] ||
 GtQ[c, 0]) && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int e^{2 \tanh ^{-1}(a x)} x^m \left (c-a^2 c x^2\right )^{5/2} \, dx &=c \int x^m (1+a x)^2 \left (c-a^2 c x^2\right )^{3/2} \, dx\\ &=-\frac {x^{1+m} \left (c-a^2 c x^2\right )^{5/2}}{6+m}-\frac {\int x^m \left (-a^2 c (7+2 m)-2 a^3 c (6+m) x\right ) \left (c-a^2 c x^2\right )^{3/2} \, dx}{a^2 (6+m)}\\ &=-\frac {x^{1+m} \left (c-a^2 c x^2\right )^{5/2}}{6+m}+(2 a c) \int x^{1+m} \left (c-a^2 c x^2\right )^{3/2} \, dx+\frac {(c (7+2 m)) \int x^m \left (c-a^2 c x^2\right )^{3/2} \, dx}{6+m}\\ &=-\frac {x^{1+m} \left (c-a^2 c x^2\right )^{5/2}}{6+m}+\frac {\left (2 a c^2 \sqrt {c-a^2 c x^2}\right ) \int x^{1+m} \left (1-a^2 x^2\right )^{3/2} \, dx}{\sqrt {1-a^2 x^2}}+\frac {\left (c^2 (7+2 m) \sqrt {c-a^2 c x^2}\right ) \int x^m \left (1-a^2 x^2\right )^{3/2} \, dx}{(6+m) \sqrt {1-a^2 x^2}}\\ &=-\frac {x^{1+m} \left (c-a^2 c x^2\right )^{5/2}}{6+m}+\frac {c^2 (7+2 m) x^{1+m} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{(1+m) (6+m) \sqrt {1-a^2 x^2}}+\frac {2 a c^2 x^{2+m} \sqrt {c-a^2 c x^2} \, _2F_1\left (-\frac {3}{2},\frac {2+m}{2};\frac {4+m}{2};a^2 x^2\right )}{(2+m) \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.28, size = 180, normalized size = 1.02 \begin {gather*} \frac {c^2 x^{1+m} \sqrt {c-a^2 c x^2} \left (\frac {2 a x \, _2F_1\left (-\frac {1}{2},1+\frac {m}{2};2+\frac {m}{2};a^2 x^2\right )}{2+m}-\frac {2 a^3 x^3 \, _2F_1\left (-\frac {1}{2},2+\frac {m}{2};3+\frac {m}{2};a^2 x^2\right )}{4+m}+\frac {\, _2F_1\left (-\frac {1}{2},\frac {1+m}{2};\frac {3+m}{2};a^2 x^2\right )}{1+m}-\frac {a^4 x^4 \, _2F_1\left (-\frac {1}{2},\frac {5+m}{2};\frac {7+m}{2};a^2 x^2\right )}{5+m}\right )}{\sqrt {1-a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])*x^m*(c - a^2*c*x^2)^(5/2),x]

[Out]

(c^2*x^(1 + m)*Sqrt[c - a^2*c*x^2]*((2*a*x*Hypergeometric2F1[-1/2, 1 + m/2, 2 + m/2, a^2*x^2])/(2 + m) - (2*a^
3*x^3*Hypergeometric2F1[-1/2, 2 + m/2, 3 + m/2, a^2*x^2])/(4 + m) + Hypergeometric2F1[-1/2, (1 + m)/2, (3 + m)
/2, a^2*x^2]/(1 + m) - (a^4*x^4*Hypergeometric2F1[-1/2, (5 + m)/2, (7 + m)/2, a^2*x^2])/(5 + m)))/Sqrt[1 - a^2
*x^2]

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (a x +1\right )^{2} x^{m} \left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{-a^{2} x^{2}+1}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*x^m*(-a^2*c*x^2+c)^(5/2),x)

[Out]

int((a*x+1)^2/(-a^2*x^2+1)*x^m*(-a^2*c*x^2+c)^(5/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

-integrate((-a^2*c*x^2 + c)^(5/2)*(a*x + 1)^2*x^m/(a^2*x^2 - 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

integral(-(a^4*c^2*x^4 + 2*a^3*c^2*x^3 - 2*a*c^2*x - c^2)*sqrt(-a^2*c*x^2 + c)*x^m, x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 16.02, size = 226, normalized size = 1.28 \begin {gather*} - \frac {a^{4} c^{\frac {5}{2}} x^{5} x^{m} \Gamma \left (\frac {m}{2} + \frac {5}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + \frac {5}{2} \\ \frac {m}{2} + \frac {7}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {7}{2}\right )} - \frac {a^{3} c^{\frac {5}{2}} x^{4} x^{m} \Gamma \left (\frac {m}{2} + 2\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + 2 \\ \frac {m}{2} + 3 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{\Gamma \left (\frac {m}{2} + 3\right )} + \frac {a c^{\frac {5}{2}} x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{\Gamma \left (\frac {m}{2} + 2\right )} + \frac {c^{\frac {5}{2}} x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {a^{2} x^{2} e^{2 i \pi }} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*x**m*(-a**2*c*x**2+c)**(5/2),x)

[Out]

-a**4*c**(5/2)*x**5*x**m*gamma(m/2 + 5/2)*hyper((-1/2, m/2 + 5/2), (m/2 + 7/2,), a**2*x**2*exp_polar(2*I*pi))/
(2*gamma(m/2 + 7/2)) - a**3*c**(5/2)*x**4*x**m*gamma(m/2 + 2)*hyper((-1/2, m/2 + 2), (m/2 + 3,), a**2*x**2*exp
_polar(2*I*pi))/gamma(m/2 + 3) + a*c**(5/2)*x**2*x**m*gamma(m/2 + 1)*hyper((-1/2, m/2 + 1), (m/2 + 2,), a**2*x
**2*exp_polar(2*I*pi))/gamma(m/2 + 2) + c**(5/2)*x*x**m*gamma(m/2 + 1/2)*hyper((-1/2, m/2 + 1/2), (m/2 + 3/2,)
, a**2*x**2*exp_polar(2*I*pi))/(2*gamma(m/2 + 3/2))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*x^m*(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int -\frac {x^m\,{\left (c-a^2\,c\,x^2\right )}^{5/2}\,{\left (a\,x+1\right )}^2}{a^2\,x^2-1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^m*(c - a^2*c*x^2)^(5/2)*(a*x + 1)^2)/(a^2*x^2 - 1),x)

[Out]

int(-(x^m*(c - a^2*c*x^2)^(5/2)*(a*x + 1)^2)/(a^2*x^2 - 1), x)

________________________________________________________________________________________