3.4.18 \(\int e^{\tanh ^{-1}(a x)} x (c-a c x)^4 \, dx\) [318]

Optimal. Leaf size=158 \[ -\frac {7 c^4 x \sqrt {1-a^2 x^2}}{16 a}-\frac {7 c^4 \left (1-a^2 x^2\right )^{3/2}}{24 a^2}-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {7 c^4 \text {ArcSin}(a x)}{16 a^2} \]

[Out]

-7/24*c^4*(-a^2*x^2+1)^(3/2)/a^2-7/40*c^4*(-a*x+1)*(-a^2*x^2+1)^(3/2)/a^2-1/10*c^4*(-a*x+1)^2*(-a^2*x^2+1)^(3/
2)/a^2-1/6*c^4*(-a*x+1)^3*(-a^2*x^2+1)^(3/2)/a^2-7/16*c^4*arcsin(a*x)/a^2-7/16*c^4*x*(-a^2*x^2+1)^(1/2)/a

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {6263, 809, 685, 655, 201, 222} \begin {gather*} -\frac {7 c^4 \text {ArcSin}(a x)}{16 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {7 c^4 \left (1-a^2 x^2\right )^{3/2}}{24 a^2}-\frac {7 c^4 x \sqrt {1-a^2 x^2}}{16 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*x*(c - a*c*x)^4,x]

[Out]

(-7*c^4*x*Sqrt[1 - a^2*x^2])/(16*a) - (7*c^4*(1 - a^2*x^2)^(3/2))/(24*a^2) - (7*c^4*(1 - a*x)*(1 - a^2*x^2)^(3
/2))/(40*a^2) - (c^4*(1 - a*x)^2*(1 - a^2*x^2)^(3/2))/(10*a^2) - (c^4*(1 - a*x)^3*(1 - a^2*x^2)^(3/2))/(6*a^2)
 - (7*c^4*ArcSin[a*x])/(16*a^2)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 685

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[2*c*d*((m + p)/(c*(m + 2*p + 1))), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p, x]
, x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p
]

Rule 809

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g*(d + e*x)^m*
((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(d*g + e*f) + 2*e*f*(p + 1))/(e*(m + 2*p + 2)), Int[(d +
 e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && NeQ[m + 2*p +
2, 0] && NeQ[m, 2]

Rule 6263

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} x (c-a c x)^4 \, dx &=c \int x (c-a c x)^3 \sqrt {1-a^2 x^2} \, dx\\ &=-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {c \int (c-a c x)^3 \sqrt {1-a^2 x^2} \, dx}{2 a}\\ &=-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {\left (7 c^2\right ) \int (c-a c x)^2 \sqrt {1-a^2 x^2} \, dx}{10 a}\\ &=-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {\left (7 c^3\right ) \int (c-a c x) \sqrt {1-a^2 x^2} \, dx}{8 a}\\ &=-\frac {7 c^4 \left (1-a^2 x^2\right )^{3/2}}{24 a^2}-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {\left (7 c^4\right ) \int \sqrt {1-a^2 x^2} \, dx}{8 a}\\ &=-\frac {7 c^4 x \sqrt {1-a^2 x^2}}{16 a}-\frac {7 c^4 \left (1-a^2 x^2\right )^{3/2}}{24 a^2}-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {\left (7 c^4\right ) \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx}{16 a}\\ &=-\frac {7 c^4 x \sqrt {1-a^2 x^2}}{16 a}-\frac {7 c^4 \left (1-a^2 x^2\right )^{3/2}}{24 a^2}-\frac {7 c^4 (1-a x) \left (1-a^2 x^2\right )^{3/2}}{40 a^2}-\frac {c^4 (1-a x)^2 \left (1-a^2 x^2\right )^{3/2}}{10 a^2}-\frac {c^4 (1-a x)^3 \left (1-a^2 x^2\right )^{3/2}}{6 a^2}-\frac {7 c^4 \sin ^{-1}(a x)}{16 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 83, normalized size = 0.53 \begin {gather*} -\frac {c^4 \left (\sqrt {1-a^2 x^2} \left (176-105 a x-32 a^2 x^2+170 a^3 x^3-144 a^4 x^4+40 a^5 x^5\right )-210 \text {ArcSin}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )\right )}{240 a^2} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]*x*(c - a*c*x)^4,x]

[Out]

-1/240*(c^4*(Sqrt[1 - a^2*x^2]*(176 - 105*a*x - 32*a^2*x^2 + 170*a^3*x^3 - 144*a^4*x^4 + 40*a^5*x^5) - 210*Arc
Sin[Sqrt[1 - a*x]/Sqrt[2]]))/a^2

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(371\) vs. \(2(136)=272\).
time = 0.78, size = 372, normalized size = 2.35

method result size
risch \(\frac {\left (40 a^{5} x^{5}-144 a^{4} x^{4}+170 a^{3} x^{3}-32 a^{2} x^{2}-105 a x +176\right ) \left (a^{2} x^{2}-1\right ) c^{4}}{240 a^{2} \sqrt {-a^{2} x^{2}+1}}-\frac {7 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right ) c^{4}}{16 a \sqrt {a^{2}}}\) \(102\)
meijerg \(-\frac {c^{4} \left (-\frac {\sqrt {\pi }\, x \left (-a^{2}\right )^{\frac {7}{2}} \left (56 a^{4} x^{4}+70 a^{2} x^{2}+105\right ) \sqrt {-a^{2} x^{2}+1}}{168 a^{6}}+\frac {5 \sqrt {\pi }\, \left (-a^{2}\right )^{\frac {7}{2}} \arcsin \left (a x \right )}{8 a^{7}}\right )}{2 a \sqrt {\pi }\, \sqrt {-a^{2}}}+\frac {3 c^{4} \left (-\frac {16 \sqrt {\pi }}{15}+\frac {\sqrt {\pi }\, \left (6 a^{4} x^{4}+8 a^{2} x^{2}+16\right ) \sqrt {-a^{2} x^{2}+1}}{15}\right )}{2 a^{2} \sqrt {\pi }}+\frac {c^{4} \left (-\frac {\sqrt {\pi }\, x \left (-a^{2}\right )^{\frac {5}{2}} \left (10 a^{2} x^{2}+15\right ) \sqrt {-a^{2} x^{2}+1}}{20 a^{4}}+\frac {3 \sqrt {\pi }\, \left (-a^{2}\right )^{\frac {5}{2}} \arcsin \left (a x \right )}{4 a^{5}}\right )}{a \sqrt {\pi }\, \sqrt {-a^{2}}}+\frac {c^{4} \left (\frac {4 \sqrt {\pi }}{3}-\frac {\sqrt {\pi }\, \left (4 a^{2} x^{2}+8\right ) \sqrt {-a^{2} x^{2}+1}}{6}\right )}{a^{2} \sqrt {\pi }}+\frac {3 c^{4} \left (-\frac {\sqrt {\pi }\, x \left (-a^{2}\right )^{\frac {3}{2}} \sqrt {-a^{2} x^{2}+1}}{a^{2}}+\frac {\sqrt {\pi }\, \left (-a^{2}\right )^{\frac {3}{2}} \arcsin \left (a x \right )}{a^{3}}\right )}{2 a \sqrt {\pi }\, \sqrt {-a^{2}}}-\frac {c^{4} \left (-2 \sqrt {\pi }+2 \sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}\right )}{2 a^{2} \sqrt {\pi }}\) \(355\)
default \(c^{4} \left (a^{5} \left (-\frac {x^{5} \sqrt {-a^{2} x^{2}+1}}{6 a^{2}}+\frac {-\frac {5 x^{3} \sqrt {-a^{2} x^{2}+1}}{24 a^{2}}+\frac {5 \left (-\frac {3 x \sqrt {-a^{2} x^{2}+1}}{8 a^{2}}+\frac {3 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 a^{2} \sqrt {a^{2}}}\right )}{6 a^{2}}}{a^{2}}\right )-3 a^{4} \left (-\frac {x^{4} \sqrt {-a^{2} x^{2}+1}}{5 a^{2}}+\frac {-\frac {4 x^{2} \sqrt {-a^{2} x^{2}+1}}{15 a^{2}}-\frac {8 \sqrt {-a^{2} x^{2}+1}}{15 a^{4}}}{a^{2}}\right )+2 a^{3} \left (-\frac {x^{3} \sqrt {-a^{2} x^{2}+1}}{4 a^{2}}+\frac {-\frac {3 x \sqrt {-a^{2} x^{2}+1}}{8 a^{2}}+\frac {3 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{8 a^{2} \sqrt {a^{2}}}}{a^{2}}\right )+2 a^{2} \left (-\frac {x^{2} \sqrt {-a^{2} x^{2}+1}}{3 a^{2}}-\frac {2 \sqrt {-a^{2} x^{2}+1}}{3 a^{4}}\right )-3 a \left (-\frac {x \sqrt {-a^{2} x^{2}+1}}{2 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a^{2} \sqrt {a^{2}}}\right )-\frac {\sqrt {-a^{2} x^{2}+1}}{a^{2}}\right )\) \(372\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

c^4*(a^5*(-1/6*x^5/a^2*(-a^2*x^2+1)^(1/2)+5/6/a^2*(-1/4*x^3*(-a^2*x^2+1)^(1/2)/a^2+3/4/a^2*(-1/2*x*(-a^2*x^2+1
)^(1/2)/a^2+1/2/a^2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2)))))-3*a^4*(-1/5*x^4/a^2*(-a^2*x^2+1)^(
1/2)+4/5/a^2*(-1/3*x^2*(-a^2*x^2+1)^(1/2)/a^2-2/3*(-a^2*x^2+1)^(1/2)/a^4))+2*a^3*(-1/4*x^3*(-a^2*x^2+1)^(1/2)/
a^2+3/4/a^2*(-1/2*x*(-a^2*x^2+1)^(1/2)/a^2+1/2/a^2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2))))+2*a^
2*(-1/3*x^2*(-a^2*x^2+1)^(1/2)/a^2-2/3*(-a^2*x^2+1)^(1/2)/a^4)-3*a*(-1/2*x*(-a^2*x^2+1)^(1/2)/a^2+1/2/a^2/(a^2
)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2)))-(-a^2*x^2+1)^(1/2)/a^2)

________________________________________________________________________________________

Maxima [A]
time = 0.47, size = 141, normalized size = 0.89 \begin {gather*} -\frac {1}{6} \, \sqrt {-a^{2} x^{2} + 1} a^{3} c^{4} x^{5} + \frac {3}{5} \, \sqrt {-a^{2} x^{2} + 1} a^{2} c^{4} x^{4} - \frac {17}{24} \, \sqrt {-a^{2} x^{2} + 1} a c^{4} x^{3} + \frac {2}{15} \, \sqrt {-a^{2} x^{2} + 1} c^{4} x^{2} + \frac {7 \, \sqrt {-a^{2} x^{2} + 1} c^{4} x}{16 \, a} - \frac {7 \, c^{4} \arcsin \left (a x\right )}{16 \, a^{2}} - \frac {11 \, \sqrt {-a^{2} x^{2} + 1} c^{4}}{15 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^4,x, algorithm="maxima")

[Out]

-1/6*sqrt(-a^2*x^2 + 1)*a^3*c^4*x^5 + 3/5*sqrt(-a^2*x^2 + 1)*a^2*c^4*x^4 - 17/24*sqrt(-a^2*x^2 + 1)*a*c^4*x^3
+ 2/15*sqrt(-a^2*x^2 + 1)*c^4*x^2 + 7/16*sqrt(-a^2*x^2 + 1)*c^4*x/a - 7/16*c^4*arcsin(a*x)/a^2 - 11/15*sqrt(-a
^2*x^2 + 1)*c^4/a^2

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 104, normalized size = 0.66 \begin {gather*} \frac {210 \, c^{4} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) - {\left (40 \, a^{5} c^{4} x^{5} - 144 \, a^{4} c^{4} x^{4} + 170 \, a^{3} c^{4} x^{3} - 32 \, a^{2} c^{4} x^{2} - 105 \, a c^{4} x + 176 \, c^{4}\right )} \sqrt {-a^{2} x^{2} + 1}}{240 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^4,x, algorithm="fricas")

[Out]

1/240*(210*c^4*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) - (40*a^5*c^4*x^5 - 144*a^4*c^4*x^4 + 170*a^3*c^4*x^3 -
32*a^2*c^4*x^2 - 105*a*c^4*x + 176*c^4)*sqrt(-a^2*x^2 + 1))/a^2

________________________________________________________________________________________

Sympy [A]
time = 14.11, size = 617, normalized size = 3.91 \begin {gather*} a^{5} c^{4} \left (\begin {cases} - \frac {i x^{7}}{6 \sqrt {a^{2} x^{2} - 1}} - \frac {i x^{5}}{24 a^{2} \sqrt {a^{2} x^{2} - 1}} - \frac {5 i x^{3}}{48 a^{4} \sqrt {a^{2} x^{2} - 1}} + \frac {5 i x}{16 a^{6} \sqrt {a^{2} x^{2} - 1}} - \frac {5 i \operatorname {acosh}{\left (a x \right )}}{16 a^{7}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{7}}{6 \sqrt {- a^{2} x^{2} + 1}} + \frac {x^{5}}{24 a^{2} \sqrt {- a^{2} x^{2} + 1}} + \frac {5 x^{3}}{48 a^{4} \sqrt {- a^{2} x^{2} + 1}} - \frac {5 x}{16 a^{6} \sqrt {- a^{2} x^{2} + 1}} + \frac {5 \operatorname {asin}{\left (a x \right )}}{16 a^{7}} & \text {otherwise} \end {cases}\right ) - 3 a^{4} c^{4} \left (\begin {cases} - \frac {x^{4} \sqrt {- a^{2} x^{2} + 1}}{5 a^{2}} - \frac {4 x^{2} \sqrt {- a^{2} x^{2} + 1}}{15 a^{4}} - \frac {8 \sqrt {- a^{2} x^{2} + 1}}{15 a^{6}} & \text {for}\: a \neq 0 \\\frac {x^{6}}{6} & \text {otherwise} \end {cases}\right ) + 2 a^{3} c^{4} \left (\begin {cases} - \frac {i x^{5}}{4 \sqrt {a^{2} x^{2} - 1}} - \frac {i x^{3}}{8 a^{2} \sqrt {a^{2} x^{2} - 1}} + \frac {3 i x}{8 a^{4} \sqrt {a^{2} x^{2} - 1}} - \frac {3 i \operatorname {acosh}{\left (a x \right )}}{8 a^{5}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{5}}{4 \sqrt {- a^{2} x^{2} + 1}} + \frac {x^{3}}{8 a^{2} \sqrt {- a^{2} x^{2} + 1}} - \frac {3 x}{8 a^{4} \sqrt {- a^{2} x^{2} + 1}} + \frac {3 \operatorname {asin}{\left (a x \right )}}{8 a^{5}} & \text {otherwise} \end {cases}\right ) + 2 a^{2} c^{4} \left (\begin {cases} - \frac {x^{2} \sqrt {- a^{2} x^{2} + 1}}{3 a^{2}} - \frac {2 \sqrt {- a^{2} x^{2} + 1}}{3 a^{4}} & \text {for}\: a \neq 0 \\\frac {x^{4}}{4} & \text {otherwise} \end {cases}\right ) - 3 a c^{4} \left (\begin {cases} - \frac {i x \sqrt {a^{2} x^{2} - 1}}{2 a^{2}} - \frac {i \operatorname {acosh}{\left (a x \right )}}{2 a^{3}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {x^{3}}{2 \sqrt {- a^{2} x^{2} + 1}} - \frac {x}{2 a^{2} \sqrt {- a^{2} x^{2} + 1}} + \frac {\operatorname {asin}{\left (a x \right )}}{2 a^{3}} & \text {otherwise} \end {cases}\right ) + c^{4} \left (\begin {cases} \frac {x^{2}}{2} & \text {for}\: a^{2} = 0 \\- \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{2}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x*(-a*c*x+c)**4,x)

[Out]

a**5*c**4*Piecewise((-I*x**7/(6*sqrt(a**2*x**2 - 1)) - I*x**5/(24*a**2*sqrt(a**2*x**2 - 1)) - 5*I*x**3/(48*a**
4*sqrt(a**2*x**2 - 1)) + 5*I*x/(16*a**6*sqrt(a**2*x**2 - 1)) - 5*I*acosh(a*x)/(16*a**7), Abs(a**2*x**2) > 1),
(x**7/(6*sqrt(-a**2*x**2 + 1)) + x**5/(24*a**2*sqrt(-a**2*x**2 + 1)) + 5*x**3/(48*a**4*sqrt(-a**2*x**2 + 1)) -
 5*x/(16*a**6*sqrt(-a**2*x**2 + 1)) + 5*asin(a*x)/(16*a**7), True)) - 3*a**4*c**4*Piecewise((-x**4*sqrt(-a**2*
x**2 + 1)/(5*a**2) - 4*x**2*sqrt(-a**2*x**2 + 1)/(15*a**4) - 8*sqrt(-a**2*x**2 + 1)/(15*a**6), Ne(a, 0)), (x**
6/6, True)) + 2*a**3*c**4*Piecewise((-I*x**5/(4*sqrt(a**2*x**2 - 1)) - I*x**3/(8*a**2*sqrt(a**2*x**2 - 1)) + 3
*I*x/(8*a**4*sqrt(a**2*x**2 - 1)) - 3*I*acosh(a*x)/(8*a**5), Abs(a**2*x**2) > 1), (x**5/(4*sqrt(-a**2*x**2 + 1
)) + x**3/(8*a**2*sqrt(-a**2*x**2 + 1)) - 3*x/(8*a**4*sqrt(-a**2*x**2 + 1)) + 3*asin(a*x)/(8*a**5), True)) + 2
*a**2*c**4*Piecewise((-x**2*sqrt(-a**2*x**2 + 1)/(3*a**2) - 2*sqrt(-a**2*x**2 + 1)/(3*a**4), Ne(a, 0)), (x**4/
4, True)) - 3*a*c**4*Piecewise((-I*x*sqrt(a**2*x**2 - 1)/(2*a**2) - I*acosh(a*x)/(2*a**3), Abs(a**2*x**2) > 1)
, (x**3/(2*sqrt(-a**2*x**2 + 1)) - x/(2*a**2*sqrt(-a**2*x**2 + 1)) + asin(a*x)/(2*a**3), True)) + c**4*Piecewi
se((x**2/2, Eq(a**2, 0)), (-sqrt(-a**2*x**2 + 1)/a**2, True))

________________________________________________________________________________________

Giac [A]
time = 0.47, size = 94, normalized size = 0.59 \begin {gather*} -\frac {7 \, c^{4} \arcsin \left (a x\right ) \mathrm {sgn}\left (a\right )}{16 \, a {\left | a \right |}} - \frac {1}{240} \, \sqrt {-a^{2} x^{2} + 1} {\left (\frac {176 \, c^{4}}{a^{2}} - {\left (\frac {105 \, c^{4}}{a} + 2 \, {\left (16 \, c^{4} - {\left (85 \, a c^{4} + 4 \, {\left (5 \, a^{3} c^{4} x - 18 \, a^{2} c^{4}\right )} x\right )} x\right )} x\right )} x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x*(-a*c*x+c)^4,x, algorithm="giac")

[Out]

-7/16*c^4*arcsin(a*x)*sgn(a)/(a*abs(a)) - 1/240*sqrt(-a^2*x^2 + 1)*(176*c^4/a^2 - (105*c^4/a + 2*(16*c^4 - (85
*a*c^4 + 4*(5*a^3*c^4*x - 18*a^2*c^4)*x)*x)*x)*x)

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 154, normalized size = 0.97 \begin {gather*} \frac {2\,c^4\,x^2\,\sqrt {1-a^2\,x^2}}{15}-\frac {11\,c^4\,\sqrt {1-a^2\,x^2}}{15\,a^2}+\frac {7\,c^4\,x\,\sqrt {1-a^2\,x^2}}{16\,a}-\frac {17\,a\,c^4\,x^3\,\sqrt {1-a^2\,x^2}}{24}-\frac {7\,c^4\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{16\,a\,\sqrt {-a^2}}+\frac {3\,a^2\,c^4\,x^4\,\sqrt {1-a^2\,x^2}}{5}-\frac {a^3\,c^4\,x^5\,\sqrt {1-a^2\,x^2}}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(c - a*c*x)^4*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

(2*c^4*x^2*(1 - a^2*x^2)^(1/2))/15 - (11*c^4*(1 - a^2*x^2)^(1/2))/(15*a^2) + (7*c^4*x*(1 - a^2*x^2)^(1/2))/(16
*a) - (17*a*c^4*x^3*(1 - a^2*x^2)^(1/2))/24 - (7*c^4*asinh(x*(-a^2)^(1/2)))/(16*a*(-a^2)^(1/2)) + (3*a^2*c^4*x
^4*(1 - a^2*x^2)^(1/2))/5 - (a^3*c^4*x^5*(1 - a^2*x^2)^(1/2))/6

________________________________________________________________________________________