3.6.7 \(\int \frac {e^{-3 \tanh ^{-1}(a x)}}{(c-\frac {c}{a x})^3} \, dx\) [507]

Optimal. Leaf size=45 \[ -\frac {1}{a c^3 \sqrt {1-a^2 x^2}}-\frac {\sqrt {1-a^2 x^2}}{a c^3} \]

[Out]

-1/a/c^3/(-a^2*x^2+1)^(1/2)-(-a^2*x^2+1)^(1/2)/a/c^3

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {6266, 6263, 272, 45} \begin {gather*} -\frac {\sqrt {1-a^2 x^2}}{a c^3}-\frac {1}{a c^3 \sqrt {1-a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcTanh[a*x])*(c - c/(a*x))^3),x]

[Out]

-(1/(a*c^3*Sqrt[1 - a^2*x^2])) - Sqrt[1 - a^2*x^2]/(a*c^3)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6263

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[c^n,
 Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c +
 d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]

Rule 6266

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*(1 + c*(x/d))^
p*(E^(n*ArcTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 - a^2*d^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^3} \, dx &=-\frac {a^3 \int \frac {e^{-3 \tanh ^{-1}(a x)} x^3}{(1-a x)^3} \, dx}{c^3}\\ &=-\frac {a^3 \int \frac {x^3}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c^3}\\ &=-\frac {a^3 \text {Subst}\left (\int \frac {x}{\left (1-a^2 x\right )^{3/2}} \, dx,x,x^2\right )}{2 c^3}\\ &=-\frac {a^3 \text {Subst}\left (\int \left (\frac {1}{a^2 \left (1-a^2 x\right )^{3/2}}-\frac {1}{a^2 \sqrt {1-a^2 x}}\right ) \, dx,x,x^2\right )}{2 c^3}\\ &=-\frac {1}{a c^3 \sqrt {1-a^2 x^2}}-\frac {\sqrt {1-a^2 x^2}}{a c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 30, normalized size = 0.67 \begin {gather*} \frac {-2+a^2 x^2}{a c^3 \sqrt {1-a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcTanh[a*x])*(c - c/(a*x))^3),x]

[Out]

(-2 + a^2*x^2)/(a*c^3*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 3 vs. order 2.
time = 0.75, size = 744, normalized size = 16.53

method result size
trager \(-\frac {\left (a^{2} x^{2}-2\right ) \sqrt {-a^{2} x^{2}+1}}{a \,c^{3} \left (a^{2} x^{2}-1\right )}\) \(41\)
gosper \(\frac {\left (-a^{2} x^{2}+1\right )^{\frac {3}{2}} \left (a^{2} x^{2}-2\right )}{a \left (a x -1\right )^{2} c^{3} \left (a x +1\right )^{2}}\) \(43\)
risch \(\frac {a^{2} x^{2}-1}{a \sqrt {-a^{2} x^{2}+1}\, c^{3}}-\frac {1}{a \,c^{3} \sqrt {-a^{2} x^{2}+1}}\) \(50\)
default \(\frac {a^{3} \left (\frac {-\frac {3 \left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{16 a \left (x -\frac {1}{a}\right )^{2}}-\frac {9 a \left (\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}-a \left (-\frac {\left (-2 a^{2} \left (x -\frac {1}{a}\right )-2 a \right ) \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )}{16}}{a^{5}}+\frac {\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {1}{a}\right )^{3}}+2 a \left (-\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {1}{a}\right )^{2}}-3 a \left (\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}-a \left (-\frac {\left (-2 a^{2} \left (x -\frac {1}{a}\right )-2 a \right ) \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )\right )}{8 a^{6}}+\frac {-\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{3}}-2 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{2}}+3 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}+a \left (-\frac {\left (-2 a^{2} \left (x +\frac {1}{a}\right )+2 a \right ) \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )\right )}{8 a^{6}}-\frac {3 \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{2}}+3 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}+a \left (-\frac {\left (-2 a^{2} \left (x +\frac {1}{a}\right )+2 a \right ) \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )\right )}{16 a^{5}}\right )}{c^{3}}\) \(744\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a/x)^3,x,method=_RETURNVERBOSE)

[Out]

a^3/c^3*(3/16/a^5*(-1/a/(x-1/a)^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)-3*a*(1/3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/
2)-a*(-1/4*(-2*a^2*(x-1/a)-2*a)/a^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-
a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)))))+1/8/a^6*(1/a/(x-1/a)^3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)+2*a*(-1/a/(x-1/
a)^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)-3*a*(1/3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/2)-a*(-1/4*(-2*a^2*(x-1/a)-2*
a)/a^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1
/2))))))+1/8/a^6*(-1/a/(x+1/a)^3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-2*a*(1/a/(x+1/a)^2*(-a^2*(x+1/a)^2+2*a*(x+
1/a))^(5/2)+3*a*(1/3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)+a*(-1/4*(-2*a^2*(x+1/a)+2*a)/a^2*(-a^2*(x+1/a)^2+2*a*(
x+1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))))))-3/16/a^5*(1/a/(x+1/
a)^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)+3*a*(1/3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)+a*(-1/4*(-2*a^2*(x+1/a)+2*
a)/a^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1
/2))))))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 45, normalized size = 1.00 \begin {gather*} -\frac {{\left (a^{2} x^{2} - 2\right )} \sqrt {a x + 1} \sqrt {-a x + 1}}{a^{3} c^{3} x^{2} - a c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a/x)^3,x, algorithm="maxima")

[Out]

-(a^2*x^2 - 2)*sqrt(a*x + 1)*sqrt(-a*x + 1)/(a^3*c^3*x^2 - a*c^3)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 53, normalized size = 1.18 \begin {gather*} -\frac {2 \, a^{2} x^{2} + {\left (a^{2} x^{2} - 2\right )} \sqrt {-a^{2} x^{2} + 1} - 2}{a^{3} c^{3} x^{2} - a c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a/x)^3,x, algorithm="fricas")

[Out]

-(2*a^2*x^2 + (a^2*x^2 - 2)*sqrt(-a^2*x^2 + 1) - 2)/(a^3*c^3*x^2 - a*c^3)

________________________________________________________________________________________

Sympy [A]
time = 13.53, size = 34, normalized size = 0.76 \begin {gather*} - \frac {2 \left (\frac {\sqrt {- a^{2} x^{2} + 1}}{2 c^{3}} + \frac {1}{2 c^{3} \sqrt {- a^{2} x^{2} + 1}}\right )}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/(c-c/a/x)**3,x)

[Out]

-2*(sqrt(-a**2*x**2 + 1)/(2*c**3) + 1/(2*c**3*sqrt(-a**2*x**2 + 1)))/a

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 38, normalized size = 0.84 \begin {gather*} -\frac {\frac {\sqrt {-a^{2} x^{2} + 1}}{c^{3}} + \frac {1}{\sqrt {-a^{2} x^{2} + 1} c^{3}}}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(c-c/a/x)^3,x, algorithm="giac")

[Out]

-(sqrt(-a^2*x^2 + 1)/c^3 + 1/(sqrt(-a^2*x^2 + 1)*c^3))/a

________________________________________________________________________________________

Mupad [B]
time = 0.86, size = 116, normalized size = 2.58 \begin {gather*} \frac {\sqrt {1-a^2\,x^2}}{2\,c^3\,\left (x\,\sqrt {-a^2}+\frac {\sqrt {-a^2}}{a}\right )\,\sqrt {-a^2}}-\frac {\sqrt {1-a^2\,x^2}}{a\,c^3}-\frac {\sqrt {1-a^2\,x^2}}{2\,c^3\,\left (x\,\sqrt {-a^2}-\frac {\sqrt {-a^2}}{a}\right )\,\sqrt {-a^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(3/2)/((c - c/(a*x))^3*(a*x + 1)^3),x)

[Out]

(1 - a^2*x^2)^(1/2)/(2*c^3*(x*(-a^2)^(1/2) + (-a^2)^(1/2)/a)*(-a^2)^(1/2)) - (1 - a^2*x^2)^(1/2)/(a*c^3) - (1
- a^2*x^2)^(1/2)/(2*c^3*(x*(-a^2)^(1/2) - (-a^2)^(1/2)/a)*(-a^2)^(1/2))

________________________________________________________________________________________