3.7.13 \(\int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\) [613]

Optimal. Leaf size=123 \[ \frac {20 a \sqrt {c-\frac {c}{a x}}}{3 \sqrt {1-a x} \sqrt {1+a x}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x} \sqrt {1+a x}}+\frac {46 a^2 \sqrt {c-\frac {c}{a x}} x}{3 \sqrt {1-a x} \sqrt {1+a x}} \]

[Out]

20/3*a*(c-c/a/x)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)-2/3*(c-c/a/x)^(1/2)/x/(-a*x+1)^(1/2)/(a*x+1)^(1/2)+46/3*a^
2*x*(c-c/a/x)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {6269, 6264, 91, 79, 37} \begin {gather*} \frac {46 a^2 x \sqrt {c-\frac {c}{a x}}}{3 \sqrt {1-a x} \sqrt {a x+1}}+\frac {20 a \sqrt {c-\frac {c}{a x}}}{3 \sqrt {1-a x} \sqrt {a x+1}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x} \sqrt {a x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x^2),x]

[Out]

(20*a*Sqrt[c - c/(a*x)])/(3*Sqrt[1 - a*x]*Sqrt[1 + a*x]) - (2*Sqrt[c - c/(a*x)])/(3*x*Sqrt[1 - a*x]*Sqrt[1 + a
*x]) + (46*a^2*Sqrt[c - c/(a*x)]*x)/(3*Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 91

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c - a*d
)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d*e - c*f)*(n + 1))), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 6264

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[u*(1 + d*(x/c))^
p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6269

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[x^p*((c + d/x)^p/(1 + c*(x
/d))^p), Int[u*(1 + c*(x/d))^p*(E^(n*ArcTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*
d^2, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {e^{-3 \tanh ^{-1}(a x)} \sqrt {1-a x}}{x^{5/2}} \, dx}{\sqrt {1-a x}}\\ &=\frac {\left (\sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {(1-a x)^2}{x^{5/2} (1+a x)^{3/2}} \, dx}{\sqrt {1-a x}}\\ &=-\frac {2 \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x} \sqrt {1+a x}}+\frac {\left (2 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {-5 a+\frac {3 a^2 x}{2}}{x^{3/2} (1+a x)^{3/2}} \, dx}{3 \sqrt {1-a x}}\\ &=\frac {20 a \sqrt {c-\frac {c}{a x}}}{3 \sqrt {1-a x} \sqrt {1+a x}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x} \sqrt {1+a x}}+\frac {\left (23 a^2 \sqrt {c-\frac {c}{a x}} \sqrt {x}\right ) \int \frac {1}{\sqrt {x} (1+a x)^{3/2}} \, dx}{3 \sqrt {1-a x}}\\ &=\frac {20 a \sqrt {c-\frac {c}{a x}}}{3 \sqrt {1-a x} \sqrt {1+a x}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{3 x \sqrt {1-a x} \sqrt {1+a x}}+\frac {46 a^2 \sqrt {c-\frac {c}{a x}} x}{3 \sqrt {1-a x} \sqrt {1+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 50, normalized size = 0.41 \begin {gather*} \frac {2 \sqrt {c-\frac {c}{a x}} \left (-1+10 a x+23 a^2 x^2\right )}{3 x \sqrt {1-a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x^2),x]

[Out]

(2*Sqrt[c - c/(a*x)]*(-1 + 10*a*x + 23*a^2*x^2))/(3*x*Sqrt[1 - a^2*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.88, size = 61, normalized size = 0.50

method result size
gosper \(\frac {2 \left (23 a^{2} x^{2}+10 a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}{3 x \left (a x +1\right )^{2} \left (a x -1\right )^{2}}\) \(61\)
default \(-\frac {2 \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {-a^{2} x^{2}+1}\, \left (23 a^{2} x^{2}+10 a x -1\right )}{3 x \left (a x +1\right ) \left (a x -1\right )}\) \(61\)
risch \(\frac {2 \left (11 a^{2} x^{2}+10 a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {a c x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{3 x \sqrt {-a c x \left (a x +1\right )}\, \sqrt {-a^{2} x^{2}+1}}+\frac {8 a^{2} x \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {a c x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{\sqrt {-a c x \left (a x +1\right )}\, \sqrt {-a^{2} x^{2}+1}}\) \(151\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-2/3*(c*(a*x-1)/a/x)^(1/2)/x*(-a^2*x^2+1)^(1/2)/(a*x+1)*(23*a^2*x^2+10*a*x-1)/(a*x-1)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/((a*x + 1)^3*x^2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 58, normalized size = 0.47 \begin {gather*} -\frac {2 \, {\left (23 \, a^{2} x^{2} + 10 \, a x - 1\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{3 \, {\left (a^{2} x^{3} - x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^2,x, algorithm="fricas")

[Out]

-2/3*(23*a^2*x^2 + 10*a*x - 1)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x))/(a^2*x^3 - x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}{x^{2} \left (a x + 1\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/x**2,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(x**2*(a*x + 1)**3), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [B]
time = 1.12, size = 80, normalized size = 0.65 \begin {gather*} \frac {\sqrt {c-\frac {c}{a\,x}}\,\left (\frac {46\,x^2\,\sqrt {1-a^2\,x^2}}{3}-\frac {2\,\sqrt {1-a^2\,x^2}}{3\,a^2}+\frac {20\,x\,\sqrt {1-a^2\,x^2}}{3\,a}\right )}{\frac {x}{a^2}-x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(x^2*(a*x + 1)^3),x)

[Out]

((c - c/(a*x))^(1/2)*((46*x^2*(1 - a^2*x^2)^(1/2))/3 - (2*(1 - a^2*x^2)^(1/2))/(3*a^2) + (20*x*(1 - a^2*x^2)^(
1/2))/(3*a)))/(x/a^2 - x^3)

________________________________________________________________________________________