3.7.39 \(\int e^{2 \tanh ^{-1}(a x)} (c-\frac {c}{a^2 x^2})^2 \, dx\) [639]

Optimal. Leaf size=41 \[ -\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-c^2 x-\frac {2 c^2 \log (x)}{a} \]

[Out]

-1/3*c^2/a^4/x^3-c^2/a^3/x^2-c^2*x-2*c^2*ln(x)/a

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6292, 6285, 76} \begin {gather*} -\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-\frac {2 c^2 \log (x)}{a}+c^2 (-x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcTanh[a*x])*(c - c/(a^2*x^2))^2,x]

[Out]

-1/3*c^2/(a^4*x^3) - c^2/(a^3*x^2) - c^2*x - (2*c^2*Log[x])/a

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 6285

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 6292

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[(u/x^(2*p))*(1
 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int e^{2 \tanh ^{-1}(a x)} \left (c-\frac {c}{a^2 x^2}\right )^2 \, dx &=\frac {c^2 \int \frac {e^{2 \tanh ^{-1}(a x)} \left (1-a^2 x^2\right )^2}{x^4} \, dx}{a^4}\\ &=\frac {c^2 \int \frac {(1-a x) (1+a x)^3}{x^4} \, dx}{a^4}\\ &=\frac {c^2 \int \left (-a^4+\frac {1}{x^4}+\frac {2 a}{x^3}-\frac {2 a^3}{x}\right ) \, dx}{a^4}\\ &=-\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-c^2 x-\frac {2 c^2 \log (x)}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 41, normalized size = 1.00 \begin {gather*} -\frac {c^2}{3 a^4 x^3}-\frac {c^2}{a^3 x^2}-c^2 x-\frac {2 c^2 \log (x)}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(2*ArcTanh[a*x])*(c - c/(a^2*x^2))^2,x]

[Out]

-1/3*c^2/(a^4*x^3) - c^2/(a^3*x^2) - c^2*x - (2*c^2*Log[x])/a

________________________________________________________________________________________

Maple [A]
time = 1.04, size = 33, normalized size = 0.80

method result size
default \(\frac {c^{2} \left (-a^{4} x -\frac {1}{3 x^{3}}-\frac {a}{x^{2}}-2 a^{3} \ln \left (x \right )\right )}{a^{4}}\) \(33\)
risch \(-x \,c^{2}+\frac {-a \,c^{2} x -\frac {1}{3} c^{2}}{a^{4} x^{3}}-\frac {2 c^{2} \ln \left (x \right )}{a}\) \(38\)
norman \(\frac {-\frac {c^{2}}{3 a}-x \,c^{2}-a^{3} c^{2} x^{4}}{a^{3} x^{3}}-\frac {2 c^{2} \ln \left (x \right )}{a}\) \(45\)
meijerg \(-\frac {c^{2} \left (-\frac {2 x \left (-a^{2}\right )^{\frac {3}{2}}}{a^{2}}+\frac {2 \left (-a^{2}\right )^{\frac {3}{2}} \arctanh \left (a x \right )}{a^{3}}\right )}{2 \sqrt {-a^{2}}}-\frac {c^{2} \arctanh \left (a x \right )}{a}+\frac {c^{2} \left (-\frac {2}{x \sqrt {-a^{2}}}+\frac {2 a \arctanh \left (a x \right )}{\sqrt {-a^{2}}}\right )}{2 \sqrt {-a^{2}}}-\frac {c^{2} \ln \left (-a^{2} x^{2}+1\right )}{a}-\frac {2 c^{2} \left (-\ln \left (-a^{2} x^{2}+1\right )+2 \ln \left (x \right )+\ln \left (-a^{2}\right )\right )}{a}-\frac {c^{2} \left (\ln \left (-a^{2} x^{2}+1\right )-2 \ln \left (x \right )-\ln \left (-a^{2}\right )+\frac {1}{a^{2} x^{2}}\right )}{a}+\frac {c^{2} \left (-\frac {2 a^{2}}{x \left (-a^{2}\right )^{\frac {3}{2}}}-\frac {2}{3 x^{3} \left (-a^{2}\right )^{\frac {3}{2}}}+\frac {2 a^{3} \arctanh \left (a x \right )}{\left (-a^{2}\right )^{\frac {3}{2}}}\right )}{2 \sqrt {-a^{2}}}\) \(241\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x,method=_RETURNVERBOSE)

[Out]

c^2/a^4*(-a^4*x-1/3/x^3-a/x^2-2*a^3*ln(x))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 36, normalized size = 0.88 \begin {gather*} -c^{2} x - \frac {2 \, c^{2} \log \left (x\right )}{a} - \frac {3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="maxima")

[Out]

-c^2*x - 2*c^2*log(x)/a - 1/3*(3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 43, normalized size = 1.05 \begin {gather*} -\frac {3 \, a^{4} c^{2} x^{4} + 6 \, a^{3} c^{2} x^{3} \log \left (x\right ) + 3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="fricas")

[Out]

-1/3*(3*a^4*c^2*x^4 + 6*a^3*c^2*x^3*log(x) + 3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

Sympy [A]
time = 0.09, size = 41, normalized size = 1.00 \begin {gather*} \frac {- a^{4} c^{2} x - 2 a^{3} c^{2} \log {\left (x \right )} - \frac {3 a c^{2} x + c^{2}}{3 x^{3}}}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(c-c/a**2/x**2)**2,x)

[Out]

(-a**4*c**2*x - 2*a**3*c**2*log(x) - (3*a*c**2*x + c**2)/(3*x**3))/a**4

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 37, normalized size = 0.90 \begin {gather*} -c^{2} x - \frac {2 \, c^{2} \log \left ({\left | x \right |}\right )}{a} - \frac {3 \, a c^{2} x + c^{2}}{3 \, a^{4} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(c-c/a^2/x^2)^2,x, algorithm="giac")

[Out]

-c^2*x - 2*c^2*log(abs(x))/a - 1/3*(3*a*c^2*x + c^2)/(a^4*x^3)

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 35, normalized size = 0.85 \begin {gather*} -\frac {c^2\,\left (3\,a\,x+3\,a^4\,x^4+6\,a^3\,x^3\,\ln \left (x\right )+1\right )}{3\,a^4\,x^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - c/(a^2*x^2))^2*(a*x + 1)^2)/(a^2*x^2 - 1),x)

[Out]

-(c^2*(3*a*x + 3*a^4*x^4 + 6*a^3*x^3*log(x) + 1))/(3*a^4*x^3)

________________________________________________________________________________________