3.9.42 \(\int \frac {e^{3 \tanh ^{-1}(a+b x)}}{x^4} \, dx\) [842]

Optimal. Leaf size=260 \[ \frac {\left (52+51 a+2 a^2\right ) b^3 \sqrt {1+a+b x}}{6 (1-a)^4 (1+a) \sqrt {1-a-b x}}-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}-\frac {\left (11+18 a+6 a^2\right ) b^3 \tanh ^{-1}\left (\frac {\sqrt {1-a} \sqrt {1+a+b x}}{\sqrt {1+a} \sqrt {1-a-b x}}\right )}{(1-a)^4 (1+a) \sqrt {1-a^2}} \]

[Out]

-(6*a^2+18*a+11)*b^3*arctanh((1-a)^(1/2)*(b*x+a+1)^(1/2)/(1+a)^(1/2)/(-b*x-a+1)^(1/2))/(1-a)^4/(1+a)/(-a^2+1)^
(1/2)+1/6*(2*a^2+51*a+52)*b^3*(b*x+a+1)^(1/2)/(1-a)^4/(1+a)/(-b*x-a+1)^(1/2)-1/3*(1+a)*(b*x+a+1)^(1/2)/(1-a)/x
^3/(-b*x-a+1)^(1/2)-7/6*b*(b*x+a+1)^(1/2)/(1-a)^2/x^2/(-b*x-a+1)^(1/2)-1/6*(19+16*a)*b^2*(b*x+a+1)^(1/2)/(1-a)
^3/(1+a)/x/(-b*x-a+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6298, 100, 156, 157, 12, 95, 214} \begin {gather*} \frac {\left (2 a^2+51 a+52\right ) b^3 \sqrt {a+b x+1}}{6 (1-a)^4 (a+1) \sqrt {-a-b x+1}}-\frac {\left (6 a^2+18 a+11\right ) b^3 \tanh ^{-1}\left (\frac {\sqrt {1-a} \sqrt {a+b x+1}}{\sqrt {a+1} \sqrt {-a-b x+1}}\right )}{(1-a)^4 (a+1) \sqrt {1-a^2}}-\frac {(16 a+19) b^2 \sqrt {a+b x+1}}{6 (1-a)^3 (a+1) x \sqrt {-a-b x+1}}-\frac {(a+1) \sqrt {a+b x+1}}{3 (1-a) x^3 \sqrt {-a-b x+1}}-\frac {7 b \sqrt {a+b x+1}}{6 (1-a)^2 x^2 \sqrt {-a-b x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcTanh[a + b*x])/x^4,x]

[Out]

((52 + 51*a + 2*a^2)*b^3*Sqrt[1 + a + b*x])/(6*(1 - a)^4*(1 + a)*Sqrt[1 - a - b*x]) - ((1 + a)*Sqrt[1 + a + b*
x])/(3*(1 - a)*x^3*Sqrt[1 - a - b*x]) - (7*b*Sqrt[1 + a + b*x])/(6*(1 - a)^2*x^2*Sqrt[1 - a - b*x]) - ((19 + 1
6*a)*b^2*Sqrt[1 + a + b*x])/(6*(1 - a)^3*(1 + a)*x*Sqrt[1 - a - b*x]) - ((11 + 18*a + 6*a^2)*b^3*ArcTanh[(Sqrt
[1 - a]*Sqrt[1 + a + b*x])/(Sqrt[1 + a]*Sqrt[1 - a - b*x])])/((1 - a)^4*(1 + a)*Sqrt[1 - a^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 157

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6298

Int[E^(ArcTanh[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[(d + e*x)^m*((1
+ a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x]

Rubi steps

\begin {align*} \int \frac {e^{3 \tanh ^{-1}(a+b x)}}{x^4} \, dx &=\int \frac {(1+a+b x)^{3/2}}{x^4 (1-a-b x)^{3/2}} \, dx\\ &=-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {\int \frac {-7 (1+a) b-6 b^2 x}{x^3 (1-a-b x)^{3/2} \sqrt {1+a+b x}} \, dx}{3 (1-a)}\\ &=-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}+\frac {\int \frac {(1+a) (19+16 a) b^2+14 (1+a) b^3 x}{x^2 (1-a-b x)^{3/2} \sqrt {1+a+b x}} \, dx}{6 (1-a)^2 (1+a)}\\ &=-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}-\frac {\int \frac {-3 (1+a) \left (11+18 a+6 a^2\right ) b^3-(1+a) (19+16 a) b^4 x}{x (1-a-b x)^{3/2} \sqrt {1+a+b x}} \, dx}{6 (1-a)^3 (1+a)^2}\\ &=\frac {\left (52+51 a+2 a^2\right ) b^3 \sqrt {1+a+b x}}{6 (1-a)^4 (1+a) \sqrt {1-a-b x}}-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}+\frac {\int \frac {3 (1+a) \left (11+18 a+6 a^2\right ) b^4}{x \sqrt {1-a-b x} \sqrt {1+a+b x}} \, dx}{6 (1-a)^4 (1+a)^2 b}\\ &=\frac {\left (52+51 a+2 a^2\right ) b^3 \sqrt {1+a+b x}}{6 (1-a)^4 (1+a) \sqrt {1-a-b x}}-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}+\frac {\left (\left (11+18 a+6 a^2\right ) b^3\right ) \int \frac {1}{x \sqrt {1-a-b x} \sqrt {1+a+b x}} \, dx}{2 (1-a)^4 (1+a)}\\ &=\frac {\left (52+51 a+2 a^2\right ) b^3 \sqrt {1+a+b x}}{6 (1-a)^4 (1+a) \sqrt {1-a-b x}}-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}+\frac {\left (\left (11+18 a+6 a^2\right ) b^3\right ) \text {Subst}\left (\int \frac {1}{-1-a-(-1+a) x^2} \, dx,x,\frac {\sqrt {1+a+b x}}{\sqrt {1-a-b x}}\right )}{(1-a)^4 (1+a)}\\ &=\frac {\left (52+51 a+2 a^2\right ) b^3 \sqrt {1+a+b x}}{6 (1-a)^4 (1+a) \sqrt {1-a-b x}}-\frac {(1+a) \sqrt {1+a+b x}}{3 (1-a) x^3 \sqrt {1-a-b x}}-\frac {7 b \sqrt {1+a+b x}}{6 (1-a)^2 x^2 \sqrt {1-a-b x}}-\frac {(19+16 a) b^2 \sqrt {1+a+b x}}{6 (1-a)^3 (1+a) x \sqrt {1-a-b x}}-\frac {\left (11+18 a+6 a^2\right ) b^3 \tanh ^{-1}\left (\frac {\sqrt {1-a} \sqrt {1+a+b x}}{\sqrt {1+a} \sqrt {1-a-b x}}\right )}{(1-a)^4 (1+a) \sqrt {1-a^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.23, size = 199, normalized size = 0.77 \begin {gather*} -\frac {-2 (-1+a)^{7/2} (1+a) (1+a+b x)^{5/2}+(-1+a)^{5/2} (3+4 a) b x (1+a+b x)^{5/2}-\left (11+18 a+6 a^2\right ) b^2 x^2 \left (\sqrt {-1+a} \sqrt {1+a+b x} \left (-1+a^2+5 b x+a b x\right )-6 \sqrt {-1-a} b x \sqrt {1-a-b x} \tanh ^{-1}\left (\frac {\sqrt {-1-a} \sqrt {1-a-b x}}{\sqrt {-1+a} \sqrt {1+a+b x}}\right )\right )}{6 (-1+a)^{5/2} \left (-1+a^2\right )^2 x^3 \sqrt {1-a-b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcTanh[a + b*x])/x^4,x]

[Out]

-1/6*(-2*(-1 + a)^(7/2)*(1 + a)*(1 + a + b*x)^(5/2) + (-1 + a)^(5/2)*(3 + 4*a)*b*x*(1 + a + b*x)^(5/2) - (11 +
 18*a + 6*a^2)*b^2*x^2*(Sqrt[-1 + a]*Sqrt[1 + a + b*x]*(-1 + a^2 + 5*b*x + a*b*x) - 6*Sqrt[-1 - a]*b*x*Sqrt[1
- a - b*x]*ArcTanh[(Sqrt[-1 - a]*Sqrt[1 - a - b*x])/(Sqrt[-1 + a]*Sqrt[1 + a + b*x])]))/((-1 + a)^(5/2)*(-1 +
a^2)^2*x^3*Sqrt[1 - a - b*x])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1851\) vs. \(2(226)=452\).
time = 0.09, size = 1852, normalized size = 7.12

method result size
risch \(\frac {\left (b^{2} x^{2}+2 a b x +a^{2}-1\right ) \left (2 a^{2} b^{2} x^{2}-2 a^{3} b x +27 a \,b^{2} x^{2}+2 a^{4}-9 a^{2} b x +28 b^{2} x^{2}+2 a b x -4 a^{2}+9 b x +2\right )}{6 \left (-1+a \right )^{3} x^{3} \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}\, \left (a^{2}-1\right )}-\frac {4 b^{2} \sqrt {-\left (x +\frac {-1+a}{b}\right )^{2} b^{2}-2 b \left (x +\frac {-1+a}{b}\right )}}{\left (a^{2}-1\right ) \left (-1+a \right )^{3} \left (x -\frac {1}{b}+\frac {a}{b}\right )}-\frac {4 b^{2} \sqrt {-\left (x +\frac {-1+a}{b}\right )^{2} b^{2}-2 b \left (x +\frac {-1+a}{b}\right )}\, a}{\left (a^{2}-1\right ) \left (-1+a \right )^{3} \left (x -\frac {1}{b}+\frac {a}{b}\right )}-\frac {3 b^{3} \ln \left (\frac {-2 a^{2}+2-2 a b x +2 \sqrt {-a^{2}+1}\, \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{x}\right ) a^{2}}{\left (a^{2}-1\right ) \left (-1+a \right )^{3} \sqrt {-a^{2}+1}}-\frac {9 b^{3} \ln \left (\frac {-2 a^{2}+2-2 a b x +2 \sqrt {-a^{2}+1}\, \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{x}\right ) a}{\left (a^{2}-1\right ) \left (-1+a \right )^{3} \sqrt {-a^{2}+1}}-\frac {11 b^{3} \ln \left (\frac {-2 a^{2}+2-2 a b x +2 \sqrt {-a^{2}+1}\, \sqrt {-b^{2} x^{2}-2 a b x -a^{2}+1}}{x}\right )}{2 \left (a^{2}-1\right ) \left (-1+a \right )^{3} \sqrt {-a^{2}+1}}\) \(478\)
default \(\text {Expression too large to display}\) \(1852\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a+1)^3/(1-(b*x+a)^2)^(3/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

3*b^2*(1+a)*(-1/(-a^2+1)/x/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3*b*a/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^
(1/2)+2*b*a/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3
/2)*ln((-2*a^2+2-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x))+4*b^2/(-a^2+1)*(-2*b^2*x-2*a*b)/
(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))+(a^3+3*a^2+3*a+1)*(-1/3/(-a^2+1)/x^3/(-b^2*x^2-2*a
*b*x-a^2+1)^(1/2)+7/3*b*a/(-a^2+1)*(-1/2/(-a^2+1)/x^2/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+5/2*b*a/(-a^2+1)*(-1/(-a^
2+1)/x/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3*b*a/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2*b*a/(-a^2+1)
*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln((-2*a^2+2-2*a
*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x))+4*b^2/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b
^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))+3/2*b^2/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2*b*a/(-a^
2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln((-2*a^2+2
-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x)))+4/3*b^2/(-a^2+1)*(-1/(-a^2+1)/x/(-b^2*x^2-2*a*b
*x-a^2+1)^(1/2)+3*b*a/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2*b*a/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*
b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln((-2*a^2+2-2*a*b*x+2*(-a^2+1)^(1/2)*
(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x))+4*b^2/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*
b*x-a^2+1)^(1/2)))+b^3*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2*b*a/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^
2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln((-2*a^2+2-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^
2-2*a*b*x-a^2+1)^(1/2))/x))+3*b*(a^2+2*a+1)*(-1/2/(-a^2+1)/x^2/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+5/2*b*a/(-a^2+1)
*(-1/(-a^2+1)/x/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+3*b*a/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2*b*a
/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln((-2*
a^2+2-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x))+4*b^2/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a
^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))+3/2*b^2/(-a^2+1)*(1/(-a^2+1)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)+2
*b*a/(-a^2+1)*(-2*b^2*x-2*a*b)/(-4*b^2*(-a^2+1)-4*b^2*a^2)/(-b^2*x^2-2*a*b*x-a^2+1)^(1/2)-1/(-a^2+1)^(3/2)*ln(
(-2*a^2+2-2*a*b*x+2*(-a^2+1)^(1/2)*(-b^2*x^2-2*a*b*x-a^2+1)^(1/2))/x)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a+1)^3/(1-(b*x+a)^2)^(3/2)/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a-1>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [A]
time = 0.41, size = 704, normalized size = 2.71 \begin {gather*} \left [-\frac {3 \, {\left ({\left (6 \, a^{2} + 18 \, a + 11\right )} b^{4} x^{4} + {\left (6 \, a^{3} + 12 \, a^{2} - 7 \, a - 11\right )} b^{3} x^{3}\right )} \sqrt {-a^{2} + 1} \log \left (\frac {{\left (2 \, a^{2} - 1\right )} b^{2} x^{2} + 2 \, a^{4} + 4 \, {\left (a^{3} - a\right )} b x + 2 \, \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a b x + a^{2} - 1\right )} \sqrt {-a^{2} + 1} - 4 \, a^{2} + 2}{x^{2}}\right ) + 2 \, {\left (2 \, a^{7} + {\left (2 \, a^{4} + 51 \, a^{3} + 50 \, a^{2} - 51 \, a - 52\right )} b^{3} x^{3} - 2 \, a^{6} - 6 \, a^{5} + {\left (16 \, a^{4} + 3 \, a^{3} - 35 \, a^{2} - 3 \, a + 19\right )} b^{2} x^{2} + 6 \, a^{4} + 6 \, a^{3} - 7 \, {\left (a^{5} - a^{4} - 2 \, a^{3} + 2 \, a^{2} + a - 1\right )} b x - 6 \, a^{2} - 2 \, a + 2\right )} \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{12 \, {\left ({\left (a^{7} - 3 \, a^{6} + a^{5} + 5 \, a^{4} - 5 \, a^{3} - a^{2} + 3 \, a - 1\right )} b x^{4} + {\left (a^{8} - 4 \, a^{7} + 4 \, a^{6} + 4 \, a^{5} - 10 \, a^{4} + 4 \, a^{3} + 4 \, a^{2} - 4 \, a + 1\right )} x^{3}\right )}}, \frac {3 \, {\left ({\left (6 \, a^{2} + 18 \, a + 11\right )} b^{4} x^{4} + {\left (6 \, a^{3} + 12 \, a^{2} - 7 \, a - 11\right )} b^{3} x^{3}\right )} \sqrt {a^{2} - 1} \arctan \left (\frac {\sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1} {\left (a b x + a^{2} - 1\right )} \sqrt {a^{2} - 1}}{{\left (a^{2} - 1\right )} b^{2} x^{2} + a^{4} + 2 \, {\left (a^{3} - a\right )} b x - 2 \, a^{2} + 1}\right ) - {\left (2 \, a^{7} + {\left (2 \, a^{4} + 51 \, a^{3} + 50 \, a^{2} - 51 \, a - 52\right )} b^{3} x^{3} - 2 \, a^{6} - 6 \, a^{5} + {\left (16 \, a^{4} + 3 \, a^{3} - 35 \, a^{2} - 3 \, a + 19\right )} b^{2} x^{2} + 6 \, a^{4} + 6 \, a^{3} - 7 \, {\left (a^{5} - a^{4} - 2 \, a^{3} + 2 \, a^{2} + a - 1\right )} b x - 6 \, a^{2} - 2 \, a + 2\right )} \sqrt {-b^{2} x^{2} - 2 \, a b x - a^{2} + 1}}{6 \, {\left ({\left (a^{7} - 3 \, a^{6} + a^{5} + 5 \, a^{4} - 5 \, a^{3} - a^{2} + 3 \, a - 1\right )} b x^{4} + {\left (a^{8} - 4 \, a^{7} + 4 \, a^{6} + 4 \, a^{5} - 10 \, a^{4} + 4 \, a^{3} + 4 \, a^{2} - 4 \, a + 1\right )} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a+1)^3/(1-(b*x+a)^2)^(3/2)/x^4,x, algorithm="fricas")

[Out]

[-1/12*(3*((6*a^2 + 18*a + 11)*b^4*x^4 + (6*a^3 + 12*a^2 - 7*a - 11)*b^3*x^3)*sqrt(-a^2 + 1)*log(((2*a^2 - 1)*
b^2*x^2 + 2*a^4 + 4*(a^3 - a)*b*x + 2*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a*b*x + a^2 - 1)*sqrt(-a^2 + 1) - 4*
a^2 + 2)/x^2) + 2*(2*a^7 + (2*a^4 + 51*a^3 + 50*a^2 - 51*a - 52)*b^3*x^3 - 2*a^6 - 6*a^5 + (16*a^4 + 3*a^3 - 3
5*a^2 - 3*a + 19)*b^2*x^2 + 6*a^4 + 6*a^3 - 7*(a^5 - a^4 - 2*a^3 + 2*a^2 + a - 1)*b*x - 6*a^2 - 2*a + 2)*sqrt(
-b^2*x^2 - 2*a*b*x - a^2 + 1))/((a^7 - 3*a^6 + a^5 + 5*a^4 - 5*a^3 - a^2 + 3*a - 1)*b*x^4 + (a^8 - 4*a^7 + 4*a
^6 + 4*a^5 - 10*a^4 + 4*a^3 + 4*a^2 - 4*a + 1)*x^3), 1/6*(3*((6*a^2 + 18*a + 11)*b^4*x^4 + (6*a^3 + 12*a^2 - 7
*a - 11)*b^3*x^3)*sqrt(a^2 - 1)*arctan(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*(a*b*x + a^2 - 1)*sqrt(a^2 - 1)/((a^
2 - 1)*b^2*x^2 + a^4 + 2*(a^3 - a)*b*x - 2*a^2 + 1)) - (2*a^7 + (2*a^4 + 51*a^3 + 50*a^2 - 51*a - 52)*b^3*x^3
- 2*a^6 - 6*a^5 + (16*a^4 + 3*a^3 - 35*a^2 - 3*a + 19)*b^2*x^2 + 6*a^4 + 6*a^3 - 7*(a^5 - a^4 - 2*a^3 + 2*a^2
+ a - 1)*b*x - 6*a^2 - 2*a + 2)*sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1))/((a^7 - 3*a^6 + a^5 + 5*a^4 - 5*a^3 - a^2
+ 3*a - 1)*b*x^4 + (a^8 - 4*a^7 + 4*a^6 + 4*a^5 - 10*a^4 + 4*a^3 + 4*a^2 - 4*a + 1)*x^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x + 1\right )^{3}}{x^{4} \left (- \left (a + b x - 1\right ) \left (a + b x + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a+1)**3/(1-(b*x+a)**2)**(3/2)/x**4,x)

[Out]

Integral((a + b*x + 1)**3/(x**4*(-(a + b*x - 1)*(a + b*x + 1))**(3/2)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 1836 vs. \(2 (216) = 432\).
time = 0.46, size = 1836, normalized size = 7.06 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a+1)^3/(1-(b*x+a)^2)^(3/2)/x^4,x, algorithm="giac")

[Out]

8*b^4/((a^4*abs(b) - 4*a^3*abs(b) + 6*a^2*abs(b) - 4*a*abs(b) + abs(b))*((sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a
bs(b) + b)/(b^2*x + a*b) - 1)) + (6*a^2*b^4 + 18*a*b^4 + 11*b^4)*arctan(((sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*a
bs(b) + b)*a/(b^2*x + a*b) - 1)/sqrt(a^2 - 1))/((a^5*abs(b) - 3*a^4*abs(b) + 2*a^3*abs(b) + 2*a^2*abs(b) - 3*a
*abs(b) + abs(b))*sqrt(a^2 - 1)) - 1/3*(12*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a^7*b^4/(b^2*x +
a*b)^2 + 6*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^4*a^7*b^4/(b^2*x + a*b)^4 + 6*a^7*b^4 - 24*(sqrt(-b
^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*a^6*b^4/(b^2*x + a*b) + 72*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b)
+ b)^2*a^6*b^4/(b^2*x + a*b)^2 - 36*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*a^6*b^4/(b^2*x + a*b)^3
+ 36*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^4*a^6*b^4/(b^2*x + a*b)^4 - 12*(sqrt(-b^2*x^2 - 2*a*b*x -
 a^2 + 1)*abs(b) + b)^5*a^6*b^4/(b^2*x + a*b)^5 + 36*a^6*b^4 - 171*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b)
+ b)*a^5*b^4/(b^2*x + a*b) + 84*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a^5*b^4/(b^2*x + a*b)^2 - 21
6*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*a^5*b^4/(b^2*x + a*b)^3 + 54*(sqrt(-b^2*x^2 - 2*a*b*x - a^
2 + 1)*abs(b) + b)^4*a^5*b^4/(b^2*x + a*b)^4 - 45*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^5*a^5*b^4/(b
^2*x + a*b)^5 + 22*a^5*b^4 - 120*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*a^4*b^4/(b^2*x + a*b) + 252*(
sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a^4*b^4/(b^2*x + a*b)^2 - 156*(sqrt(-b^2*x^2 - 2*a*b*x - a^2
+ 1)*abs(b) + b)^3*a^4*b^4/(b^2*x + a*b)^3 + 153*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^4*a^4*b^4/(b^
2*x + a*b)^4 - 12*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^5*a^4*b^4/(b^2*x + a*b)^5 - 9*a^4*b^4 + 36*(
sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)*a^3*b^4/(b^2*x + a*b) + 192*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)
*abs(b) + b)^2*a^3*b^4/(b^2*x + a*b)^2 - 90*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*a^3*b^4/(b^2*x +
 a*b)^3 + 78*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^4*a^3*b^4/(b^2*x + a*b)^4 + 18*(sqrt(-b^2*x^2 - 2
*a*b*x - a^2 + 1)*abs(b) + b)^5*a^3*b^4/(b^2*x + a*b)^5 + 2*a^3*b^4 - 6*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*ab
s(b) + b)*a^2*b^4/(b^2*x + a*b) - 54*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a^2*b^4/(b^2*x + a*b)^2
 - 100*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*a^2*b^4/(b^2*x + a*b)^3 - 54*(sqrt(-b^2*x^2 - 2*a*b*x
 - a^2 + 1)*abs(b) + b)^4*a^2*b^4/(b^2*x + a*b)^4 - 6*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^5*a^2*b^
4/(b^2*x + a*b)^5 + 12*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^2*a*b^4/(b^2*x + a*b)^2 + 36*(sqrt(-b^2
*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*a*b^4/(b^2*x + a*b)^3 + 12*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b)
+ b)^4*a*b^4/(b^2*x + a*b)^4 - 8*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)^3*b^4/(b^2*x + a*b)^3)/((a^8*
abs(b) - 3*a^7*abs(b) + 2*a^6*abs(b) + 2*a^5*abs(b) - 3*a^4*abs(b) + a^3*abs(b))*((sqrt(-b^2*x^2 - 2*a*b*x - a
^2 + 1)*abs(b) + b)^2*a/(b^2*x + a*b)^2 + a - 2*(sqrt(-b^2*x^2 - 2*a*b*x - a^2 + 1)*abs(b) + b)/(b^2*x + a*b))
^3)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,x+1\right )}^3}{x^4\,{\left (1-{\left (a+b\,x\right )}^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + 1)^3/(x^4*(1 - (a + b*x)^2)^(3/2)),x)

[Out]

int((a + b*x + 1)^3/(x^4*(1 - (a + b*x)^2)^(3/2)), x)

________________________________________________________________________________________