3.1.19 \(\int \frac {\tanh ^{-1}(\frac {\sqrt {e} x}{\sqrt {d+e x^2}})}{x^{3/2}} \, dx\) [19]

Optimal. Leaf size=113 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}} \]

[Out]

-2*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(1/2)+2*e^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2
*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(d^(1/2)+x*e^(
1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/d^(1/4)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6356, 335, 226} \begin {gather*} \frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + (2*e^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d]
 + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(d^(1/4)*Sqrt[d + e*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 6356

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcT
anh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
 FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^{3/2}} \, dx &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\left (2 \sqrt {e}\right ) \int \frac {1}{\sqrt {x} \sqrt {d+e x^2}} \, dx\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\left (4 \sqrt {e}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\frac {2 \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{d} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.08, size = 111, normalized size = 0.98 \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{\sqrt {x}}+\frac {4 i \sqrt {e} \sqrt {1+\frac {d}{e x^2}} x F\left (\left .i \sinh ^{-1}\left (\frac {\sqrt {\frac {i \sqrt {d}}{\sqrt {e}}}}{\sqrt {x}}\right )\right |-1\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {e}}} \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(3/2),x]

[Out]

(-2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/Sqrt[x] + ((4*I)*Sqrt[e]*Sqrt[1 + d/(e*x^2)]*x*EllipticF[I*ArcSinh[S
qrt[(I*Sqrt[d])/Sqrt[e]]/Sqrt[x]], -1])/(Sqrt[(I*Sqrt[d])/Sqrt[e]]*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.18, size = 0, normalized size = 0.00 \[\int \frac {\arctanh \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{x^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

[Out]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="maxima")

[Out]

2*d*integrate(-x*e^(1/2*log(x^2*e + d) + 1/2)/((x^4*e^2 + d*x^2*e)*x^(3/2) - (x^2*e + d)*e^(log(x^2*e + d) + 3
/2*log(x))), x) - log(x*e^(1/2) + sqrt(x^2*e + d))/sqrt(x) + log(-x*e^(1/2) + sqrt(x^2*e + d))/sqrt(x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 112, normalized size = 0.99 \begin {gather*} \frac {4 \, x {\rm weierstrassPInverse}\left (-\frac {4 \, d}{\cosh \left (\frac {1}{2}\right )^{2} + 2 \, \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + \sinh \left (\frac {1}{2}\right )^{2}}, 0, x\right ) - \sqrt {x} \log \left (\frac {2 \, x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 4 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + 2 \, x^{2} \sinh \left (\frac {1}{2}\right )^{2} + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + d}{d}\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="fricas")

[Out]

(4*x*weierstrassPInverse(-4*d/(cosh(1/2)^2 + 2*cosh(1/2)*sinh(1/2) + sinh(1/2)^2), 0, x) - sqrt(x)*log((2*x^2*
cosh(1/2)^2 + 4*x^2*cosh(1/2)*sinh(1/2) + 2*x^2*sinh(1/2)^2 + 2*(x*cosh(1/2) + x*sinh(1/2))*sqrt(((x^2 + d)*co
sh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + d)/d))/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}{\left (\frac {\sqrt {e} x}{\sqrt {d + e x^{2}}} \right )}}{x^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x**(3/2),x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2),x, algorithm="giac")

[Out]

integrate(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {atanh}\left (\frac {\sqrt {e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(3/2),x)

[Out]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(3/2), x)

________________________________________________________________________________________