3.4.42 \(\int x^2 \tanh ^{-1}(1-i d-d \cot (a+b x)) \, dx\) [342]

Optimal. Leaf size=169 \[ \frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {i x^2 \text {PolyLog}\left (2,(1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {x \text {PolyLog}\left (3,(1-i d) e^{2 i a+2 i b x}\right )}{4 b^2}-\frac {i \text {PolyLog}\left (4,(1-i d) e^{2 i a+2 i b x}\right )}{8 b^3} \]

[Out]

1/12*I*b*x^4-1/3*x^3*arctanh(-1+I*d+d*cot(b*x+a))-1/6*x^3*ln(1-(1-I*d)*exp(2*I*a+2*I*b*x))+1/4*I*x^2*polylog(2
,(1-I*d)*exp(2*I*a+2*I*b*x))/b-1/4*x*polylog(3,(1-I*d)*exp(2*I*a+2*I*b*x))/b^2-1/8*I*polylog(4,(1-I*d)*exp(2*I
*a+2*I*b*x))/b^3

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6400, 2215, 2221, 2611, 6744, 2320, 6724} \begin {gather*} -\frac {i \text {Li}_4\left ((1-i d) e^{2 i a+2 i b x}\right )}{8 b^3}-\frac {x \text {Li}_3\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b^2}+\frac {i x^2 \text {Li}_2\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {1}{3} x^3 \tanh ^{-1}(d (-\cot (a+b x))-i d+1)+\frac {1}{12} i b x^4 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*ArcTanh[1 - I*d - d*Cot[a + b*x]],x]

[Out]

(I/12)*b*x^4 + (x^3*ArcTanh[1 - I*d - d*Cot[a + b*x]])/3 - (x^3*Log[1 - (1 - I*d)*E^((2*I)*a + (2*I)*b*x)])/6
+ ((I/4)*x^2*PolyLog[2, (1 - I*d)*E^((2*I)*a + (2*I)*b*x)])/b - (x*PolyLog[3, (1 - I*d)*E^((2*I)*a + (2*I)*b*x
)])/(4*b^2) - ((I/8)*PolyLog[4, (1 - I*d)*E^((2*I)*a + (2*I)*b*x)])/b^3

Rule 2215

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Dist[b/a, Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n))
, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6400

Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + Dist[I*(b/(f*(m + 1))), Int[(e + f*x)^(m + 1)/(c - I*d -
c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6744

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Dist[f*(m/(b*c*p*Log[F])), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps

\begin {align*} \int x^2 \tanh ^{-1}(1-i d-d \cot (a+b x)) \, dx &=\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))+\frac {1}{3} (i b) \int \frac {x^3}{1+(-1+i d) e^{2 i a+2 i b x}} \, dx\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))+\frac {1}{3} (b (i+d)) \int \frac {e^{2 i a+2 i b x} x^3}{1+(-1+i d) e^{2 i a+2 i b x}} \, dx\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {1}{2} \int x^2 \log \left (1+(-1+i d) e^{2 i a+2 i b x}\right ) \, dx\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {i x^2 \text {Li}_2\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {i \int x \text {Li}_2\left (-(-1+i d) e^{2 i a+2 i b x}\right ) \, dx}{2 b}\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {i x^2 \text {Li}_2\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {x \text {Li}_3\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b^2}+\frac {\int \text {Li}_3\left ((1-i d) e^{2 i a+2 i b x}\right ) \, dx}{4 b^2}\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {i x^2 \text {Li}_2\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {x \text {Li}_3\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b^2}-\frac {i \text {Subst}\left (\int \frac {\text {Li}_3((1-i d) x)}{x} \, dx,x,e^{2 i a+2 i b x}\right )}{8 b^3}\\ &=\frac {1}{12} i b x^4+\frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {1}{6} x^3 \log \left (1-(1-i d) e^{2 i a+2 i b x}\right )+\frac {i x^2 \text {Li}_2\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b}-\frac {x \text {Li}_3\left ((1-i d) e^{2 i a+2 i b x}\right )}{4 b^2}-\frac {i \text {Li}_4\left ((1-i d) e^{2 i a+2 i b x}\right )}{8 b^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.31, size = 155, normalized size = 0.92 \begin {gather*} \frac {1}{3} x^3 \tanh ^{-1}(1-i d-d \cot (a+b x))-\frac {4 b^3 x^3 \log \left (1+\frac {e^{-2 i (a+b x)}}{-1+i d}\right )+6 i b^2 x^2 \text {PolyLog}\left (2,\frac {i e^{-2 i (a+b x)}}{i+d}\right )+6 b x \text {PolyLog}\left (3,\frac {i e^{-2 i (a+b x)}}{i+d}\right )-3 i \text {PolyLog}\left (4,\frac {i e^{-2 i (a+b x)}}{i+d}\right )}{24 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*ArcTanh[1 - I*d - d*Cot[a + b*x]],x]

[Out]

(x^3*ArcTanh[1 - I*d - d*Cot[a + b*x]])/3 - (4*b^3*x^3*Log[1 + 1/((-1 + I*d)*E^((2*I)*(a + b*x)))] + (6*I)*b^2
*x^2*PolyLog[2, I/((I + d)*E^((2*I)*(a + b*x)))] + 6*b*x*PolyLog[3, I/((I + d)*E^((2*I)*(a + b*x)))] - (3*I)*P
olyLog[4, I/((I + d)*E^((2*I)*(a + b*x)))])/(24*b^3)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.87, size = 2346, normalized size = 13.88

method result size
risch \(\text {Expression too large to display}\) \(2346\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2*arctanh(-1+I*d+d*cot(b*x+a)),x,method=_RETURNVERBOSE)

[Out]

1/6*I/b^3*a^3/(I+d)*ln(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)+1/3*I/b^3/(I+d)*ln(1+I*(I+d)*exp(2*I*(b*x+a)))
*a^3-1/4*I/b^2/(I+d)*polylog(3,-I*(I+d)*exp(2*I*(b*x+a)))*x-1/2*I/b^3*a^3/(I+d)*ln(1+I*exp(I*(b*x+a))*(I*(I+d)
)^(1/2))-1/2*I/b^3*a^3/(I+d)*ln(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))+1/12*I*x^3*Pi*csgn(I*d/(exp(2*I*(b*x+a))-1
)*exp(2*I*(b*x+a)))*csgn(d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))-1/4/b^2*d/(I+d)*polylog(3,-I*(I+d)*exp(2*I*(
b*x+a)))*x+1/12*I*x^3*Pi*csgn(I*d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))^3+1/12*I*x^3*Pi*csgn(I*exp(2*I*(b*x+a
))/(exp(2*I*(b*x+a))-1))^3+1/12*I*b*x^4-1/6*I*Pi*x^3+1/12*I*x^3*Pi*csgn(I*exp(2*I*(b*x+a)))*csgn(I/(exp(2*I*(b
*x+a))-1))*csgn(I*exp(2*I*(b*x+a))/(exp(2*I*(b*x+a))-1))-1/12*I*x^3*Pi*csgn(I/(exp(2*I*(b*x+a))-1))*csgn(I*(I*
exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I))*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))
+1/2*I/b^3*a^2*d/(I+d)*dilog(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))+1/4*I/b*d/(I+d)*polylog(2,-I*(I+d)*exp(2*I*(b
*x+a)))*x^2-1/4*I/b^3*d/(I+d)*polylog(2,-I*(I+d)*exp(2*I*(b*x+a)))*a^2-1/2*I/b^2*a^2/(I+d)*ln(1+I*exp(I*(b*x+a
))*(I*(I+d))^(1/2))*x-1/2*I/b^2*a^2/(I+d)*ln(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))*x+1/12*I*x^3*Pi*csgn(I*exp(2*
I*(b*x+a))/(exp(2*I*(b*x+a))-1))*csgn(I*d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))*csgn(I*d)-1/2/b^2*a^2*d/(I+d)
*ln(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))*x-1/6*I*x^3*Pi*csgn(I*exp(I*(b*x+a)))*csgn(I*exp(2*I*(b*x+a)))^2+1/12*
I*x^3*Pi*csgn(I*exp(I*(b*x+a)))^2*csgn(I*exp(2*I*(b*x+a)))+1/2/b^2*d/(I+d)*ln(1+I*(I+d)*exp(2*I*(b*x+a)))*x*a^
2-1/2/b^2*a^2*d/(I+d)*ln(1+I*exp(I*(b*x+a))*(I*(I+d))^(1/2))*x+1/2*I/b^2/(I+d)*ln(1+I*(I+d)*exp(2*I*(b*x+a)))*
x*a^2+1/2*I/b^3*a^2*d/(I+d)*dilog(1+I*exp(I*(b*x+a))*(I*(I+d))^(1/2))+1/12*I*x^3*Pi*csgn(I*exp(2*I*(b*x+a)))^3
-1/12*I*x^3*Pi*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^3-1/12*I*x^3*Pi*csgn(I*d
/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))^2*csgn(I*d)+1/6/b^3*a^3*d/(I+d)*ln(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))
*d-I)+1/12*I*x^3*Pi*csgn((I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^2+1/8/b^3/(I+d)*polyl
og(4,-I*(I+d)*exp(2*I*(b*x+a)))-1/8*I/b^3*d/(I+d)*polylog(4,-I*(I+d)*exp(2*I*(b*x+a)))-1/12*I*x^3*Pi*csgn(I/(e
xp(2*I*(b*x+a))-1))*csgn(I*exp(2*I*(b*x+a))/(exp(2*I*(b*x+a))-1))^2-1/12*I*x^3*Pi*csgn(I*exp(2*I*(b*x+a))/(exp
(2*I*(b*x+a))-1))*csgn(I*d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))^2+1/12*I*x^3*Pi*csgn(I/(exp(2*I*(b*x+a))-1))
*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^2+1/12*I*x^3*Pi*csgn(I*(I*exp(2*I*(b*x
+a))+exp(2*I*(b*x+a))*d-I))*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^2-1/12*I*x^
3*Pi*csgn((I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^3-1/12*I*x^3*Pi*csgn(d/(exp(2*I*(b*x
+a))-1)*exp(2*I*(b*x+a)))^3-1/6*x^3*ln(d)-1/12*I*x^3*Pi*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(
2*I*(b*x+a))-1))*csgn((I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))-1/6*I/(I+d)*ln(1+I*(I+d)
*exp(2*I*(b*x+a)))*x^3-1/6*d/(I+d)*ln(1+I*(I+d)*exp(2*I*(b*x+a)))*x^3-1/2/b^3*a^2/(I+d)*dilog(1+I*exp(I*(b*x+a
))*(I*(I+d))^(1/2))+1/12*I*x^3*Pi*csgn(I*(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))*csgn(
(I*exp(2*I*(b*x+a))+exp(2*I*(b*x+a))*d-I)/(exp(2*I*(b*x+a))-1))^2-1/2/b^3*a^3*d/(I+d)*ln(1+I*exp(I*(b*x+a))*(I
*(I+d))^(1/2))-1/12*I*x^3*Pi*csgn(I*d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))*csgn(d/(exp(2*I*(b*x+a))-1)*exp(2
*I*(b*x+a)))^2-1/12*I*x^3*Pi*csgn(I*exp(2*I*(b*x+a)))*csgn(I*exp(2*I*(b*x+a))/(exp(2*I*(b*x+a))-1))^2+1/3/b^3*
d/(I+d)*ln(1+I*(I+d)*exp(2*I*(b*x+a)))*a^3-1/2/b^3*a^3*d/(I+d)*ln(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))-1/2/b^3*
a^2/(I+d)*dilog(1-I*exp(I*(b*x+a))*(I*(I+d))^(1/2))-1/4/b/(I+d)*polylog(2,-I*(I+d)*exp(2*I*(b*x+a)))*x^2+1/4/b
^3/(I+d)*polylog(2,-I*(I+d)*exp(2*I*(b*x+a)))*a^2-1/3*x^3*ln(exp(I*(b*x+a)))+1/6*x^3*ln(I*exp(2*I*(b*x+a))+exp
(2*I*(b*x+a))*d-I)+1/12*I*x^3*Pi*csgn(d/(exp(2*I*(b*x+a))-1)*exp(2*I*(b*x+a)))^2

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 345 vs. \(2 (119) = 238\).
time = 0.30, size = 345, normalized size = 2.04 \begin {gather*} -\frac {\frac {12 \, {\left ({\left (b x + a\right )}^{3} - 3 \, {\left (b x + a\right )}^{2} a + 3 \, {\left (b x + a\right )} a^{2}\right )} \operatorname {artanh}\left (d \cot \left (b x + a\right ) + i \, d - 1\right )}{b^{2}} + \frac {-3 i \, {\left (b x + a\right )}^{4} + 12 i \, {\left (b x + a\right )}^{3} a - 18 i \, {\left (b x + a\right )}^{2} a^{2} - 2 \, {\left (4 i \, {\left (b x + a\right )}^{3} - 9 i \, {\left (b x + a\right )}^{2} a + 9 i \, {\left (b x + a\right )} a^{2}\right )} \arctan \left (-d \cos \left (2 \, b x + 2 \, a\right ) + \sin \left (2 \, b x + 2 \, a\right ), -d \sin \left (2 \, b x + 2 \, a\right ) - \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) - 3 \, {\left (4 i \, {\left (b x + a\right )}^{2} - 6 i \, {\left (b x + a\right )} a + 3 i \, a^{2}\right )} {\rm Li}_2\left ({\left (-i \, d + 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}\right ) + {\left (4 \, {\left (b x + a\right )}^{3} - 9 \, {\left (b x + a\right )}^{2} a + 9 \, {\left (b x + a\right )} a^{2}\right )} \log \left ({\left (d^{2} + 1\right )} \cos \left (2 \, b x + 2 \, a\right )^{2} + {\left (d^{2} + 1\right )} \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, d \sin \left (2 \, b x + 2 \, a\right ) - 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) + 3 \, {\left (4 \, b x + a\right )} {\rm Li}_{3}({\left (-i \, d + 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}) + 6 i \, {\rm Li}_{4}({\left (-i \, d + 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )})}{b^{2}}}{36 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-x^2*arctanh(-1+I*d+d*cot(b*x+a)),x, algorithm="maxima")

[Out]

-1/36*(12*((b*x + a)^3 - 3*(b*x + a)^2*a + 3*(b*x + a)*a^2)*arctanh(d*cot(b*x + a) + I*d - 1)/b^2 + (-3*I*(b*x
 + a)^4 + 12*I*(b*x + a)^3*a - 18*I*(b*x + a)^2*a^2 - 2*(4*I*(b*x + a)^3 - 9*I*(b*x + a)^2*a + 9*I*(b*x + a)*a
^2)*arctan2(-d*cos(2*b*x + 2*a) + sin(2*b*x + 2*a), -d*sin(2*b*x + 2*a) - cos(2*b*x + 2*a) + 1) - 3*(4*I*(b*x
+ a)^2 - 6*I*(b*x + a)*a + 3*I*a^2)*dilog((-I*d + 1)*e^(2*I*b*x + 2*I*a)) + (4*(b*x + a)^3 - 9*(b*x + a)^2*a +
 9*(b*x + a)*a^2)*log((d^2 + 1)*cos(2*b*x + 2*a)^2 + (d^2 + 1)*sin(2*b*x + 2*a)^2 - 2*d*sin(2*b*x + 2*a) - 2*c
os(2*b*x + 2*a) + 1) + 3*(4*b*x + a)*polylog(3, (-I*d + 1)*e^(2*I*b*x + 2*I*a)) + 6*I*polylog(4, (-I*d + 1)*e^
(2*I*b*x + 2*I*a)))/b^2)/b

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 180, normalized size = 1.07 \begin {gather*} \frac {2 i \, b^{4} x^{4} - 4 \, b^{3} x^{3} \log \left (-\frac {d e^{\left (2 i \, b x + 2 i \, a\right )}}{{\left (d + i\right )} e^{\left (2 i \, b x + 2 i \, a\right )} - i}\right ) + 6 i \, b^{2} x^{2} {\rm Li}_2\left (-{\left (i \, d - 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}\right ) - 2 i \, a^{4} + 4 \, a^{3} \log \left (\frac {{\left (d + i\right )} e^{\left (2 i \, b x + 2 i \, a\right )} - i}{d + i}\right ) - 6 \, b x {\rm polylog}\left (3, {\left (-i \, d + 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}\right ) - 4 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left ({\left (i \, d - 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )} + 1\right ) - 3 i \, {\rm polylog}\left (4, {\left (-i \, d + 1\right )} e^{\left (2 i \, b x + 2 i \, a\right )}\right )}{24 \, b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-x^2*arctanh(-1+I*d+d*cot(b*x+a)),x, algorithm="fricas")

[Out]

1/24*(2*I*b^4*x^4 - 4*b^3*x^3*log(-d*e^(2*I*b*x + 2*I*a)/((d + I)*e^(2*I*b*x + 2*I*a) - I)) + 6*I*b^2*x^2*dilo
g(-(I*d - 1)*e^(2*I*b*x + 2*I*a)) - 2*I*a^4 + 4*a^3*log(((d + I)*e^(2*I*b*x + 2*I*a) - I)/(d + I)) - 6*b*x*pol
ylog(3, (-I*d + 1)*e^(2*I*b*x + 2*I*a)) - 4*(b^3*x^3 + a^3)*log((I*d - 1)*e^(2*I*b*x + 2*I*a) + 1) - 3*I*polyl
og(4, (-I*d + 1)*e^(2*I*b*x + 2*I*a)))/b^3

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int x^{2} \operatorname {atanh}{\left (d \cot {\left (a + b x \right )} + i d - 1 \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-x**2*atanh(-1+I*d+d*cot(b*x+a)),x)

[Out]

-Integral(x**2*atanh(d*cot(a + b*x) + I*d - 1), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-x^2*arctanh(-1+I*d+d*cot(b*x+a)),x, algorithm="giac")

[Out]

integrate(-x^2*arctanh(d*cot(b*x + a) + I*d - 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int -x^2\,\mathrm {atanh}\left (d\,\mathrm {cot}\left (a+b\,x\right )-1+d\,1{}\mathrm {i}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2*atanh(d*1i + d*cot(a + b*x) - 1),x)

[Out]

int(-x^2*atanh(d*1i + d*cot(a + b*x) - 1), x)

________________________________________________________________________________________