3.1.97 \(\int (a+b x)^2 \coth ^{-1}(a+b x) \, dx\) [97]

Optimal. Leaf size=54 \[ \frac {(a+b x)^2}{6 b}+\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b}+\frac {\log \left (1-(a+b x)^2\right )}{6 b} \]

[Out]

1/6*(b*x+a)^2/b+1/3*(b*x+a)^3*arccoth(b*x+a)/b+1/6*ln(1-(b*x+a)^2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6243, 6038, 272, 45} \begin {gather*} \frac {(a+b x)^2}{6 b}+\frac {\log \left (1-(a+b x)^2\right )}{6 b}+\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^2*ArcCoth[a + b*x],x]

[Out]

(a + b*x)^2/(6*b) + ((a + b*x)^3*ArcCoth[a + b*x])/(3*b) + Log[1 - (a + b*x)^2]/(6*b)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6038

Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCoth[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6243

Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[(f*(x/d))^m*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int (a+b x)^2 \coth ^{-1}(a+b x) \, dx &=\frac {\text {Subst}\left (\int x^2 \coth ^{-1}(x) \, dx,x,a+b x\right )}{b}\\ &=\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b}-\frac {\text {Subst}\left (\int \frac {x^3}{1-x^2} \, dx,x,a+b x\right )}{3 b}\\ &=\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b}-\frac {\text {Subst}\left (\int \frac {x}{1-x} \, dx,x,(a+b x)^2\right )}{6 b}\\ &=\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b}-\frac {\text {Subst}\left (\int \left (-1+\frac {1}{1-x}\right ) \, dx,x,(a+b x)^2\right )}{6 b}\\ &=\frac {(a+b x)^2}{6 b}+\frac {(a+b x)^3 \coth ^{-1}(a+b x)}{3 b}+\frac {\log \left (1-(a+b x)^2\right )}{6 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 42, normalized size = 0.78 \begin {gather*} \frac {(a+b x)^2+2 (a+b x)^3 \coth ^{-1}(a+b x)+\log \left (1-(a+b x)^2\right )}{6 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^2*ArcCoth[a + b*x],x]

[Out]

((a + b*x)^2 + 2*(a + b*x)^3*ArcCoth[a + b*x] + Log[1 - (a + b*x)^2])/(6*b)

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 48, normalized size = 0.89

method result size
derivativedivides \(\frac {\frac {\mathrm {arccoth}\left (b x +a \right ) \left (b x +a \right )^{3}}{3}+\frac {\left (b x +a \right )^{2}}{6}+\frac {\ln \left (b x +a -1\right )}{6}+\frac {\ln \left (b x +a +1\right )}{6}}{b}\) \(48\)
default \(\frac {\frac {\mathrm {arccoth}\left (b x +a \right ) \left (b x +a \right )^{3}}{3}+\frac {\left (b x +a \right )^{2}}{6}+\frac {\ln \left (b x +a -1\right )}{6}+\frac {\ln \left (b x +a +1\right )}{6}}{b}\) \(48\)
risch \(\frac {\left (b x +a \right )^{3} \ln \left (b x +a +1\right )}{6 b}-\frac {b^{2} x^{3} \ln \left (b x +a -1\right )}{6}-\frac {b a \,x^{2} \ln \left (b x +a -1\right )}{2}-\frac {a^{2} x \ln \left (b x +a -1\right )}{2}-\frac {\ln \left (b x +a -1\right ) a^{3}}{6 b}+\frac {b \,x^{2}}{6}+\frac {a x}{3}+\frac {\ln \left (b^{2} x^{2}+2 b x a +a^{2}-1\right )}{6 b}\) \(111\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2*arccoth(b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/b*(1/3*arccoth(b*x+a)*(b*x+a)^3+1/6*(b*x+a)^2+1/6*ln(b*x+a-1)+1/6*ln(b*x+a+1))

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 81, normalized size = 1.50 \begin {gather*} \frac {1}{6} \, b {\left (\frac {b x^{2} + 2 \, a x}{b} + \frac {{\left (a^{3} + 1\right )} \log \left (b x + a + 1\right )}{b^{2}} - \frac {{\left (a^{3} - 1\right )} \log \left (b x + a - 1\right )}{b^{2}}\right )} + \frac {1}{3} \, {\left (b^{2} x^{3} + 3 \, a b x^{2} + 3 \, a^{2} x\right )} \operatorname {arcoth}\left (b x + a\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccoth(b*x+a),x, algorithm="maxima")

[Out]

1/6*b*((b*x^2 + 2*a*x)/b + (a^3 + 1)*log(b*x + a + 1)/b^2 - (a^3 - 1)*log(b*x + a - 1)/b^2) + 1/3*(b^2*x^3 + 3
*a*b*x^2 + 3*a^2*x)*arccoth(b*x + a)

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 86, normalized size = 1.59 \begin {gather*} \frac {b^{2} x^{2} + 2 \, a b x + {\left (a^{3} + 1\right )} \log \left (b x + a + 1\right ) - {\left (a^{3} - 1\right )} \log \left (b x + a - 1\right ) + {\left (b^{3} x^{3} + 3 \, a b^{2} x^{2} + 3 \, a^{2} b x\right )} \log \left (\frac {b x + a + 1}{b x + a - 1}\right )}{6 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccoth(b*x+a),x, algorithm="fricas")

[Out]

1/6*(b^2*x^2 + 2*a*b*x + (a^3 + 1)*log(b*x + a + 1) - (a^3 - 1)*log(b*x + a - 1) + (b^3*x^3 + 3*a*b^2*x^2 + 3*
a^2*b*x)*log((b*x + a + 1)/(b*x + a - 1)))/b

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 97 vs. \(2 (39) = 78\).
time = 0.36, size = 97, normalized size = 1.80 \begin {gather*} \begin {cases} \frac {a^{3} \operatorname {acoth}{\left (a + b x \right )}}{3 b} + a^{2} x \operatorname {acoth}{\left (a + b x \right )} + a b x^{2} \operatorname {acoth}{\left (a + b x \right )} + \frac {a x}{3} + \frac {b^{2} x^{3} \operatorname {acoth}{\left (a + b x \right )}}{3} + \frac {b x^{2}}{6} + \frac {\log {\left (\frac {a}{b} + x + \frac {1}{b} \right )}}{3 b} - \frac {\operatorname {acoth}{\left (a + b x \right )}}{3 b} & \text {for}\: b \neq 0 \\a^{2} x \operatorname {acoth}{\left (a \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2*acoth(b*x+a),x)

[Out]

Piecewise((a**3*acoth(a + b*x)/(3*b) + a**2*x*acoth(a + b*x) + a*b*x**2*acoth(a + b*x) + a*x/3 + b**2*x**3*aco
th(a + b*x)/3 + b*x**2/6 + log(a/b + x + 1/b)/(3*b) - acoth(a + b*x)/(3*b), Ne(b, 0)), (a**2*x*acoth(a), True)
)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 255 vs. \(2 (48) = 96\).
time = 0.40, size = 255, normalized size = 4.72 \begin {gather*} \frac {1}{6} \, {\left ({\left (a + 1\right )} b - {\left (a - 1\right )} b\right )} {\left (\frac {\log \left (\frac {{\left | b x + a + 1 \right |}}{{\left | b x + a - 1 \right |}}\right )}{b^{2}} - \frac {\log \left ({\left | \frac {b x + a + 1}{b x + a - 1} - 1 \right |}\right )}{b^{2}} + \frac {{\left (\frac {3 \, {\left (b x + a + 1\right )}^{2}}{{\left (b x + a - 1\right )}^{2}} + 1\right )} \log \left (-\frac {\frac {1}{a - \frac {{\left (\frac {{\left (b x + a + 1\right )} {\left (a - 1\right )}}{b x + a - 1} - a - 1\right )} b}{\frac {{\left (b x + a + 1\right )} b}{b x + a - 1} - b}} + 1}{\frac {1}{a - \frac {{\left (\frac {{\left (b x + a + 1\right )} {\left (a - 1\right )}}{b x + a - 1} - a - 1\right )} b}{\frac {{\left (b x + a + 1\right )} b}{b x + a - 1} - b}} - 1}\right )}{b^{2} {\left (\frac {b x + a + 1}{b x + a - 1} - 1\right )}^{3}} + \frac {2 \, {\left (b x + a + 1\right )}}{{\left (b x + a - 1\right )} b^{2} {\left (\frac {b x + a + 1}{b x + a - 1} - 1\right )}^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2*arccoth(b*x+a),x, algorithm="giac")

[Out]

1/6*((a + 1)*b - (a - 1)*b)*(log(abs(b*x + a + 1)/abs(b*x + a - 1))/b^2 - log(abs((b*x + a + 1)/(b*x + a - 1)
- 1))/b^2 + (3*(b*x + a + 1)^2/(b*x + a - 1)^2 + 1)*log(-(1/(a - ((b*x + a + 1)*(a - 1)/(b*x + a - 1) - a - 1)
*b/((b*x + a + 1)*b/(b*x + a - 1) - b)) + 1)/(1/(a - ((b*x + a + 1)*(a - 1)/(b*x + a - 1) - a - 1)*b/((b*x + a
 + 1)*b/(b*x + a - 1) - b)) - 1))/(b^2*((b*x + a + 1)/(b*x + a - 1) - 1)^3) + 2*(b*x + a + 1)/((b*x + a - 1)*b
^2*((b*x + a + 1)/(b*x + a - 1) - 1)^2))

________________________________________________________________________________________

Mupad [B]
time = 1.54, size = 114, normalized size = 2.11 \begin {gather*} \frac {a\,x}{3}+\ln \left (\frac {1}{a+b\,x}+1\right )\,\left (\frac {a^2\,x}{2}+\frac {a\,b\,x^2}{2}+\frac {b^2\,x^3}{6}\right )+\frac {b\,x^2}{6}-\ln \left (1-\frac {1}{a+b\,x}\right )\,\left (\frac {a^2\,x}{2}+\frac {a\,b\,x^2}{2}+\frac {b^2\,x^3}{6}\right )-\frac {\ln \left (a+b\,x-1\right )\,\left (a^3-1\right )}{6\,b}+\frac {\ln \left (a+b\,x+1\right )\,\left (a^3+1\right )}{6\,b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(a + b*x)*(a + b*x)^2,x)

[Out]

(a*x)/3 + log(1/(a + b*x) + 1)*((a^2*x)/2 + (b^2*x^3)/6 + (a*b*x^2)/2) + (b*x^2)/6 - log(1 - 1/(a + b*x))*((a^
2*x)/2 + (b^2*x^3)/6 + (a*b*x^2)/2) - (log(a + b*x - 1)*(a^3 - 1))/(6*b) + (log(a + b*x + 1)*(a^3 + 1))/(6*b)

________________________________________________________________________________________