3.2.51 \(\int \coth ^{-1}(\tanh (a+b x))^3 \, dx\) [151]

Optimal. Leaf size=16 \[ \frac {\coth ^{-1}(\tanh (a+b x))^4}{4 b} \]

[Out]

1/4*arccoth(tanh(b*x+a))^4/b

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2188, 30} \begin {gather*} \frac {\coth ^{-1}(\tanh (a+b x))^4}{4 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcCoth[Tanh[a + b*x]]^3,x]

[Out]

ArcCoth[Tanh[a + b*x]]^4/(4*b)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2188

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rubi steps

\begin {align*} \int \coth ^{-1}(\tanh (a+b x))^3 \, dx &=\frac {\text {Subst}\left (\int x^3 \, dx,x,\coth ^{-1}(\tanh (a+b x))\right )}{b}\\ &=\frac {\coth ^{-1}(\tanh (a+b x))^4}{4 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 16, normalized size = 1.00 \begin {gather*} \frac {\coth ^{-1}(\tanh (a+b x))^4}{4 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[Tanh[a + b*x]]^3,x]

[Out]

ArcCoth[Tanh[a + b*x]]^4/(4*b)

________________________________________________________________________________________

Maple [A]
time = 36.29, size = 15, normalized size = 0.94

method result size
derivativedivides \(\frac {\mathrm {arccoth}\left (\tanh \left (b x +a \right )\right )^{4}}{4 b}\) \(15\)
default \(\frac {\mathrm {arccoth}\left (\tanh \left (b x +a \right )\right )^{4}}{4 b}\) \(15\)
risch \(\text {Expression too large to display}\) \(14682\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(tanh(b*x+a))^3,x,method=_RETURNVERBOSE)

[Out]

1/4*arccoth(tanh(b*x+a))^4/b

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 51 vs. \(2 (14) = 28\).
time = 0.38, size = 51, normalized size = 3.19 \begin {gather*} -\frac {3}{2} \, b x^{2} \operatorname {arcoth}\left (\tanh \left (b x + a\right )\right )^{2} + x \operatorname {arcoth}\left (\tanh \left (b x + a\right )\right )^{3} - \frac {1}{4} \, {\left (b^{2} x^{4} - 4 \, b x^{3} \operatorname {arcoth}\left (\tanh \left (b x + a\right )\right )\right )} b \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))^3,x, algorithm="maxima")

[Out]

-3/2*b*x^2*arccoth(tanh(b*x + a))^2 + x*arccoth(tanh(b*x + a))^3 - 1/4*(b^2*x^4 - 4*b*x^3*arccoth(tanh(b*x + a
)))*b

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 49 vs. \(2 (14) = 28\).
time = 0.40, size = 49, normalized size = 3.06 \begin {gather*} \frac {1}{4} \, b^{3} x^{4} + a b^{2} x^{3} - \frac {3}{8} \, {\left (\pi ^{2} b - 4 \, a^{2} b\right )} x^{2} - \frac {1}{4} \, {\left (3 \, \pi ^{2} a - 4 \, a^{3}\right )} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))^3,x, algorithm="fricas")

[Out]

1/4*b^3*x^4 + a*b^2*x^3 - 3/8*(pi^2*b - 4*a^2*b)*x^2 - 1/4*(3*pi^2*a - 4*a^3)*x

________________________________________________________________________________________

Sympy [A]
time = 0.13, size = 20, normalized size = 1.25 \begin {gather*} \begin {cases} \frac {\operatorname {acoth}^{4}{\left (\tanh {\left (a + b x \right )} \right )}}{4 b} & \text {for}\: b \neq 0 \\x \operatorname {acoth}^{3}{\left (\tanh {\left (a \right )} \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(tanh(b*x+a))**3,x)

[Out]

Piecewise((acoth(tanh(a + b*x))**4/(4*b), Ne(b, 0)), (x*acoth(tanh(a))**3, True))

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.39, size = 75, normalized size = 4.69 \begin {gather*} \frac {1}{4} \, b^{3} x^{4} - \frac {1}{2} \, {\left (-i \, \pi b^{2} - 2 \, a b^{2}\right )} x^{3} - \frac {3}{8} \, {\left (\pi ^{2} b - 4 i \, \pi a b - 4 \, a^{2} b\right )} x^{2} - \frac {1}{8} \, {\left (i \, \pi ^{3} + 6 \, \pi ^{2} a - 12 i \, \pi a^{2} - 8 \, a^{3}\right )} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(tanh(b*x+a))^3,x, algorithm="giac")

[Out]

1/4*b^3*x^4 - 1/2*(-I*pi*b^2 - 2*a*b^2)*x^3 - 3/8*(pi^2*b - 4*I*pi*a*b - 4*a^2*b)*x^2 - 1/8*(I*pi^3 + 6*pi^2*a
 - 12*I*pi*a^2 - 8*a^3)*x

________________________________________________________________________________________

Mupad [B]
time = 1.18, size = 47, normalized size = 2.94 \begin {gather*} \frac {x\,\left (2\,\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )-b\,x\right )\,\left (b^2\,x^2-2\,b\,x\,\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )+2\,{\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )}^2\right )}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(tanh(a + b*x))^3,x)

[Out]

(x*(2*acoth(tanh(a + b*x)) - b*x)*(2*acoth(tanh(a + b*x))^2 + b^2*x^2 - 2*b*x*acoth(tanh(a + b*x))))/4

________________________________________________________________________________________