3.2.61 \(\int \frac {x}{\coth ^{-1}(\tanh (a+b x))} \, dx\) [161]

Optimal. Leaf size=31 \[ \frac {x}{b}+\frac {\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2} \]

[Out]

x/b+(b*x-arccoth(tanh(b*x+a)))*ln(arccoth(tanh(b*x+a)))/b^2

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {2189, 2188, 29} \begin {gather*} \frac {\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2}+\frac {x}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/ArcCoth[Tanh[a + b*x]],x]

[Out]

x/b + ((b*x - ArcCoth[Tanh[a + b*x]])*Log[ArcCoth[Tanh[a + b*x]]])/b^2

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2188

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2189

Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[b*(x/a), x] - Dist[(b*u
- a*v)/a, Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {x}{\coth ^{-1}(\tanh (a+b x))} \, dx &=\frac {x}{b}-\frac {\left (-b x+\coth ^{-1}(\tanh (a+b x))\right ) \int \frac {1}{\coth ^{-1}(\tanh (a+b x))} \, dx}{b}\\ &=\frac {x}{b}-\frac {\left (-b x+\coth ^{-1}(\tanh (a+b x))\right ) \text {Subst}\left (\int \frac {1}{x} \, dx,x,\coth ^{-1}(\tanh (a+b x))\right )}{b^2}\\ &=\frac {x}{b}+\frac {\left (b x-\coth ^{-1}(\tanh (a+b x))\right ) \log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 31, normalized size = 1.00 \begin {gather*} \frac {x}{b}-\frac {\left (-b x+\coth ^{-1}(\tanh (a+b x))\right ) \log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/ArcCoth[Tanh[a + b*x]],x]

[Out]

x/b - ((-(b*x) + ArcCoth[Tanh[a + b*x]])*Log[ArcCoth[Tanh[a + b*x]]])/b^2

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.29, size = 4303, normalized size = 138.81

method result size
risch \(\text {Expression too large to display}\) \(4303\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/arccoth(tanh(b*x+a)),x,method=_RETURNVERBOSE)

[Out]

1/b*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(
I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(
I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*
x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi
*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*x-1/b^2*ln(Pi*csgn
(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2
*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2
*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*c
sgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp(2*
b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*ln(exp(b*x+a))+1/4*I/b^2*ln(Pi*c
sgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*
x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*
x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+P
i*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp
(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*Pi*csgn(I/(exp(2*b*x+2*a)+1))
*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-1/4*I/b^2*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*c
sgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x
+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(
b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-
Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)
+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp
(2*b*x+2*a)+1))^2-1/2*I/b^2*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp
(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b
*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp
(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/
(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+
2*Pi)*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+1/2*I/b^2*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I
*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-
2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2
*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*cs
gn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b
*x+a))-b*x-a)+4*I*a+2*Pi)*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+1/4*I/b^2*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*ex
p(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(e
xp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^
2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(
I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4
*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-1/2*I/b^2*ln(Pi*c
sgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*
x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*
x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+P
i*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+Pi*csgn(I*exp
(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+4*I*b*x+4*I*(ln(exp(b*x+a))-b*x-a)+4*I*a+2*Pi)*Pi*csgn(I*exp(b*x+a))*csgn(I*
exp(2*b*x+2*a))^2+1/4*I/b^2*ln(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp
(2*b*x+2*a)+1))-Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b
*x+2*a)+1))^2+2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp
(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+Pi*csgn(I*exp...

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.55, size = 30, normalized size = 0.97 \begin {gather*} \frac {x}{b} - \frac {{\left (-i \, \pi + 2 \, a\right )} \log \left (-i \, \pi + 2 \, b x + 2 \, a\right )}{2 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a)),x, algorithm="maxima")

[Out]

x/b - 1/2*(-I*pi + 2*a)*log(-I*pi + 2*b*x + 2*a)/b^2

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 79 vs. \(2 (31) = 62\).
time = 0.35, size = 79, normalized size = 2.55 \begin {gather*} \frac {2 \, b x + 2 \, \pi \arctan \left (-\frac {2 \, b x + 2 \, a - \sqrt {4 \, b^{2} x^{2} + 8 \, a b x + \pi ^{2} + 4 \, a^{2}}}{\pi }\right ) - a \log \left (4 \, b^{2} x^{2} + 8 \, a b x + \pi ^{2} + 4 \, a^{2}\right )}{2 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a)),x, algorithm="fricas")

[Out]

1/2*(2*b*x + 2*pi*arctan(-(2*b*x + 2*a - sqrt(4*b^2*x^2 + 8*a*b*x + pi^2 + 4*a^2))/pi) - a*log(4*b^2*x^2 + 8*a
*b*x + pi^2 + 4*a^2))/b^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\operatorname {acoth}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/acoth(tanh(b*x+a)),x)

[Out]

Integral(x/acoth(tanh(a + b*x)), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.40, size = 28, normalized size = 0.90 \begin {gather*} \frac {x}{b} - \frac {{\left (i \, \pi + 2 \, a\right )} \log \left (\pi - 2 i \, b x - 2 i \, a\right )}{2 \, b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a)),x, algorithm="giac")

[Out]

x/b - 1/2*(I*pi + 2*a)*log(pi - 2*I*b*x - 2*I*a)/b^2

________________________________________________________________________________________

Mupad [B]
time = 0.14, size = 108, normalized size = 3.48 \begin {gather*} \frac {x}{b}+\frac {\ln \left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )\right )\,\left (\ln \left (-\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1}\right )+2\,b\,x\right )}{2\,b^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/acoth(tanh(a + b*x)),x)

[Out]

x/b + (log(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) - log(-2/(exp(2*a)*exp(2*b*x) - 1)))*(log(-2
/(exp(2*a)*exp(2*b*x) - 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) - 1)) + 2*b*x))/(2*b^2)

________________________________________________________________________________________