3.2.70 \(\int \frac {x}{\coth ^{-1}(\tanh (a+b x))^2} \, dx\) [170]

Optimal. Leaf size=28 \[ -\frac {x}{b \coth ^{-1}(\tanh (a+b x))}+\frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2} \]

[Out]

-x/b/arccoth(tanh(b*x+a))+ln(arccoth(tanh(b*x+a)))/b^2

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {2199, 2188, 29} \begin {gather*} \frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2}-\frac {x}{b \coth ^{-1}(\tanh (a+b x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/ArcCoth[Tanh[a + b*x]]^2,x]

[Out]

-(x/(b*ArcCoth[Tanh[a + b*x]])) + Log[ArcCoth[Tanh[a + b*x]]]/b^2

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2188

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rule 2199

Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[u^(m + 1)*(v^
n/(a*(m + 1))), x] - Dist[b*(n/(a*(m + 1))), Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m
, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] &&  !(ILtQ[m + n, -2] && (Fra
ctionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]
) || (ILtQ[m, 0] &&  !IntegerQ[n]))

Rubi steps

\begin {align*} \int \frac {x}{\coth ^{-1}(\tanh (a+b x))^2} \, dx &=-\frac {x}{b \coth ^{-1}(\tanh (a+b x))}+\frac {\int \frac {1}{\coth ^{-1}(\tanh (a+b x))} \, dx}{b}\\ &=-\frac {x}{b \coth ^{-1}(\tanh (a+b x))}+\frac {\text {Subst}\left (\int \frac {1}{x} \, dx,x,\coth ^{-1}(\tanh (a+b x))\right )}{b^2}\\ &=-\frac {x}{b \coth ^{-1}(\tanh (a+b x))}+\frac {\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 27, normalized size = 0.96 \begin {gather*} \frac {1-\frac {b x}{\coth ^{-1}(\tanh (a+b x))}+\log \left (\coth ^{-1}(\tanh (a+b x))\right )}{b^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/ArcCoth[Tanh[a + b*x]]^2,x]

[Out]

(1 - (b*x)/ArcCoth[Tanh[a + b*x]] + Log[ArcCoth[Tanh[a + b*x]]])/b^2

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.16, size = 625, normalized size = 22.32

method result size
risch \(-\frac {4 i x}{b \left (\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}-2 \pi \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right )^{3}+\pi \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{3}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{3}+2 \pi +4 i \ln \left ({\mathrm e}^{b x +a}\right )\right )}+\frac {\ln \left (\ln \left ({\mathrm e}^{b x +a}\right )-\frac {i \pi \left (\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )-\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}-2 \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}+2 \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right )^{3}+\mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )-2 \,\mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{2}+\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{3}-\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2}+\mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{3}+2\right )}{4}\right )}{b^{2}}\) \(625\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/arccoth(tanh(b*x+a))^2,x,method=_RETURNVERBOSE)

[Out]

-4*I*x/b/(Pi*csgn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-Pi*cs
gn(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*Pi*csgn(I/(exp(2*b*x+2*a)+1))^2+2*Pi*cs
gn(I/(exp(2*b*x+2*a)+1))^3+Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2
*b*x+2*a))^2+Pi*csgn(I*exp(2*b*x+2*a))^3-Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2
+Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^3+2*Pi+4*I*ln(exp(b*x+a)))+1/b^2*ln(ln(exp(b*x+a))-1/4*I*Pi*(csg
n(I/(exp(2*b*x+2*a)+1))*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))-csgn(I/(exp(2*b*x+2*a
)+1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2-2*csgn(I/(exp(2*b*x+2*a)+1))^2+2*csgn(I/(exp(2*b*x+2*a)+1))^
3+csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-2*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+csgn(I*exp(2*b*x+2
*a))^3-csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)+1))^2+csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a
)+1))^3+2))

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.67, size = 46, normalized size = 1.64 \begin {gather*} \frac {-i \, \pi + 2 \, a}{2 \, b^{3} x - i \, \pi b^{2} + 2 \, a b^{2}} + \frac {\log \left (-i \, \pi + 2 \, b x + 2 \, a\right )}{b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a))^2,x, algorithm="maxima")

[Out]

(-I*pi + 2*a)/(2*b^3*x - I*pi*b^2 + 2*a*b^2) + log(-I*pi + 2*b*x + 2*a)/b^2

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 97 vs. \(2 (28) = 56\).
time = 0.42, size = 97, normalized size = 3.46 \begin {gather*} \frac {8 \, a b x + 2 \, \pi ^{2} + 8 \, a^{2} + {\left (4 \, b^{2} x^{2} + 8 \, a b x + \pi ^{2} + 4 \, a^{2}\right )} \log \left (4 \, b^{2} x^{2} + 8 \, a b x + \pi ^{2} + 4 \, a^{2}\right )}{2 \, {\left (4 \, b^{4} x^{2} + 8 \, a b^{3} x + \pi ^{2} b^{2} + 4 \, a^{2} b^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a))^2,x, algorithm="fricas")

[Out]

1/2*(8*a*b*x + 2*pi^2 + 8*a^2 + (4*b^2*x^2 + 8*a*b*x + pi^2 + 4*a^2)*log(4*b^2*x^2 + 8*a*b*x + pi^2 + 4*a^2))/
(4*b^4*x^2 + 8*a*b^3*x + pi^2*b^2 + 4*a^2*b^2)

________________________________________________________________________________________

Sympy [A]
time = 21.72, size = 36, normalized size = 1.29 \begin {gather*} \begin {cases} - \frac {x}{b \operatorname {acoth}{\left (\tanh {\left (a + b x \right )} \right )}} + \frac {\log {\left (\operatorname {acoth}{\left (\tanh {\left (a + b x \right )} \right )} \right )}}{b^{2}} & \text {for}\: b \neq 0 \\\frac {x^{2}}{2 \operatorname {acoth}^{2}{\left (\tanh {\left (a \right )} \right )}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/acoth(tanh(b*x+a))**2,x)

[Out]

Piecewise((-x/(b*acoth(tanh(a + b*x))) + log(acoth(tanh(a + b*x)))/b**2, Ne(b, 0)), (x**2/(2*acoth(tanh(a))**2
), True))

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.42, size = 47, normalized size = 1.68 \begin {gather*} -\frac {-i \, \pi - 2 \, a}{2 \, b^{3} x + i \, \pi b^{2} + 2 \, a b^{2}} + \frac {\log \left (i \, \pi + 2 \, b x + 2 \, a\right )}{b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arccoth(tanh(b*x+a))^2,x, algorithm="giac")

[Out]

-(-I*pi - 2*a)/(2*b^3*x + I*pi*b^2 + 2*a*b^2) + log(I*pi + 2*b*x + 2*a)/b^2

________________________________________________________________________________________

Mupad [B]
time = 0.09, size = 28, normalized size = 1.00 \begin {gather*} \frac {\ln \left (\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )\right )}{b^2}-\frac {x}{b\,\mathrm {acoth}\left (\mathrm {tanh}\left (a+b\,x\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/acoth(tanh(a + b*x))^2,x)

[Out]

log(acoth(tanh(a + b*x)))/b^2 - x/(b*acoth(tanh(a + b*x)))

________________________________________________________________________________________