3.2.95 \(\int x \coth ^{-1}(\coth (a+b x)) \, dx\) [195]

Optimal. Leaf size=23 \[ -\frac {b x^3}{6}+\frac {1}{2} x^2 \coth ^{-1}(\coth (a+b x)) \]

[Out]

-1/6*b*x^3+1/2*x^2*arccoth(coth(b*x+a))

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6377, 30} \begin {gather*} \frac {1}{2} x^2 \coth ^{-1}(\coth (a+b x))-\frac {b x^3}{6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*ArcCoth[Coth[a + b*x]],x]

[Out]

-1/6*(b*x^3) + (x^2*ArcCoth[Coth[a + b*x]])/2

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6377

Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
 + 1)*(ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + Dist[b/(f*(m + 1)), Int[(e + f*x)^(m + 1)/(c - d - c*E^
(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]

Rubi steps

\begin {align*} \int x \coth ^{-1}(\coth (a+b x)) \, dx &=\frac {1}{2} x^2 \coth ^{-1}(\coth (a+b x))-\frac {1}{2} b \int x^2 \, dx\\ &=-\frac {b x^3}{6}+\frac {1}{2} x^2 \coth ^{-1}(\coth (a+b x))\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 20, normalized size = 0.87 \begin {gather*} -\frac {1}{6} x^2 \left (b x-3 \coth ^{-1}(\coth (a+b x))\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*ArcCoth[Coth[a + b*x]],x]

[Out]

-1/6*(x^2*(b*x - 3*ArcCoth[Coth[a + b*x]]))

________________________________________________________________________________________

Maple [A]
time = 0.21, size = 20, normalized size = 0.87

method result size
default \(-\frac {b \,x^{3}}{6}+\frac {x^{2} \mathrm {arccoth}\left (\coth \left (b x +a \right )\right )}{2}\) \(20\)
risch \(\frac {x^{2} \ln \left ({\mathrm e}^{b x +a}\right )}{2}-\frac {b \,x^{3}}{6}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )}{8}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{3}}{8}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{2}}{8}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{3}}{8}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{2}}{4}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{2}}{8}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )}{8}\) \(304\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccoth(coth(b*x+a)),x,method=_RETURNVERBOSE)

[Out]

-1/6*b*x^3+1/2*x^2*arccoth(coth(b*x+a))

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 13, normalized size = 0.57 \begin {gather*} \frac {1}{3} \, b x^{3} + \frac {1}{2} \, a x^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(coth(b*x+a)),x, algorithm="maxima")

[Out]

1/3*b*x^3 + 1/2*a*x^2

________________________________________________________________________________________

Fricas [A]
time = 0.29, size = 13, normalized size = 0.57 \begin {gather*} \frac {1}{3} x^{3} b + \frac {1}{2} x^{2} a \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(coth(b*x+a)),x, algorithm="fricas")

[Out]

1/3*x^3*b + 1/2*x^2*a

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (19) = 38\).
time = 4.11, size = 180, normalized size = 7.83 \begin {gather*} \begin {cases} \frac {x^{2} \operatorname {acoth}{\left (\coth {\left (a \right )} \right )}}{2} & \text {for}\: b = 0 \\- \frac {x \log {\left (- e^{- b x} \right )} \operatorname {acoth}{\left (\coth {\left (b x + \log {\left (- e^{- b x} \right )} \right )} \right )}}{b} - \frac {\log {\left (- e^{- b x} \right )}^{2} \operatorname {acoth}{\left (\coth {\left (b x + \log {\left (- e^{- b x} \right )} \right )} \right )}}{2 b^{2}} & \text {for}\: a = \log {\left (- e^{- b x} \right )} \\- \frac {x \log {\left (e^{- b x} \right )} \operatorname {acoth}{\left (\coth {\left (b x + \log {\left (e^{- b x} \right )} \right )} \right )}}{b} - \frac {\log {\left (e^{- b x} \right )}^{2} \operatorname {acoth}{\left (\coth {\left (b x + \log {\left (e^{- b x} \right )} \right )} \right )}}{2 b^{2}} & \text {for}\: a = \log {\left (e^{- b x} \right )} \\\frac {x \operatorname {acoth}^{2}{\left (\frac {1}{\tanh {\left (a + b x \right )}} \right )}}{2 b} - \frac {\operatorname {acoth}^{3}{\left (\frac {1}{\tanh {\left (a + b x \right )}} \right )}}{6 b^{2}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acoth(coth(b*x+a)),x)

[Out]

Piecewise((x**2*acoth(coth(a))/2, Eq(b, 0)), (-x*log(-exp(-b*x))*acoth(coth(b*x + log(-exp(-b*x))))/b - log(-e
xp(-b*x))**2*acoth(coth(b*x + log(-exp(-b*x))))/(2*b**2), Eq(a, log(-exp(-b*x)))), (-x*log(exp(-b*x))*acoth(co
th(b*x + log(exp(-b*x))))/b - log(exp(-b*x))**2*acoth(coth(b*x + log(exp(-b*x))))/(2*b**2), Eq(a, log(exp(-b*x
)))), (x*acoth(1/tanh(a + b*x))**2/(2*b) - acoth(1/tanh(a + b*x))**3/(6*b**2), True))

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 13, normalized size = 0.57 \begin {gather*} \frac {1}{3} \, b x^{3} + \frac {1}{2} \, a x^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccoth(coth(b*x+a)),x, algorithm="giac")

[Out]

1/3*b*x^3 + 1/2*a*x^2

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 19, normalized size = 0.83 \begin {gather*} \frac {x^2\,\mathrm {acoth}\left (\mathrm {coth}\left (a+b\,x\right )\right )}{2}-\frac {b\,x^3}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*acoth(coth(a + b*x)),x)

[Out]

(x^2*acoth(coth(a + b*x)))/2 - (b*x^3)/6

________________________________________________________________________________________