3.2.97 \(\int \frac {\coth ^{-1}(\coth (a+b x))}{x} \, dx\) [197]

Optimal. Leaf size=21 \[ b x-\left (b x-\coth ^{-1}(\coth (a+b x))\right ) \log (x) \]

[Out]

b*x-(b*x-arccoth(coth(b*x+a)))*ln(x)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2189, 29} \begin {gather*} b x-\log (x) \left (b x-\coth ^{-1}(\coth (a+b x))\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcCoth[Coth[a + b*x]]/x,x]

[Out]

b*x - (b*x - ArcCoth[Coth[a + b*x]])*Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2189

Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[b*(x/a), x] - Dist[(b*u
- a*v)/a, Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rubi steps

\begin {align*} \int \frac {\coth ^{-1}(\coth (a+b x))}{x} \, dx &=b x-\left (b x-\coth ^{-1}(\coth (a+b x))\right ) \int \frac {1}{x} \, dx\\ &=b x-\left (b x-\coth ^{-1}(\coth (a+b x))\right ) \log (x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 19, normalized size = 0.90 \begin {gather*} b x+\left (-b x+\coth ^{-1}(\coth (a+b x))\right ) \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[Coth[a + b*x]]/x,x]

[Out]

b*x + (-(b*x) + ArcCoth[Coth[a + b*x]])*Log[x]

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 27, normalized size = 1.29

method result size
default \(b x +a \ln \left (x \right )+\ln \left (x \right ) \left (\mathrm {arccoth}\left (\coth \left (b x +a \right )\right )-b x -a \right )\) \(27\)
risch \(\ln \left (x \right ) \ln \left ({\mathrm e}^{b x +a}\right )-\ln \left (x \right ) x b +b x -\frac {i \ln \left (x \right ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )}{4}-\frac {i \ln \left (x \right ) \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{3}}{4}-\frac {i \pi \ln \left (x \right ) \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )}{4}+\frac {i \pi \ln \left (x \right ) \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{2}}{2}-\frac {i \pi \ln \left (x \right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{3}}{4}+\frac {i \ln \left (x \right ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{2}}{4}+\frac {i \ln \left (x \right ) \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}-1}\right )^{2}}{4}\) \(298\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(coth(b*x+a))/x,x,method=_RETURNVERBOSE)

[Out]

b*x+a*ln(x)+ln(x)*(arccoth(coth(b*x+a))-b*x-a)

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 8, normalized size = 0.38 \begin {gather*} b x + a \log \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(coth(b*x+a))/x,x, algorithm="maxima")

[Out]

b*x + a*log(x)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 8, normalized size = 0.38 \begin {gather*} b x + a \log \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(coth(b*x+a))/x,x, algorithm="fricas")

[Out]

b*x + a*log(x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {acoth}{\left (\coth {\left (a + b x \right )} \right )}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(coth(b*x+a))/x,x)

[Out]

Integral(acoth(coth(a + b*x))/x, x)

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 9, normalized size = 0.43 \begin {gather*} b x + a \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(coth(b*x+a))/x,x, algorithm="giac")

[Out]

b*x + a*log(abs(x))

________________________________________________________________________________________

Mupad [B]
time = 0.55, size = 58, normalized size = 2.76 \begin {gather*} b\,x-\frac {\ln \left (\frac {1}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (x\right )}{2}+\frac {\ln \left (\frac {{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\,\ln \left (x\right )}{2}-b\,x\,\ln \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(coth(a + b*x))/x,x)

[Out]

b*x - (log(1/(exp(2*a)*exp(2*b*x) + 1))*log(x))/2 + (log((exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1))*log(
x))/2 - b*x*log(x)

________________________________________________________________________________________