3.1.65 \(\int \coth ^{-1}(a+b x) \, dx\) [65]

Optimal. Leaf size=35 \[ \frac {(a+b x) \coth ^{-1}(a+b x)}{b}+\frac {\log \left (1-(a+b x)^2\right )}{2 b} \]

[Out]

(b*x+a)*arccoth(b*x+a)/b+1/2*ln(1-(b*x+a)^2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6239, 6022, 266} \begin {gather*} \frac {\log \left (1-(a+b x)^2\right )}{2 b}+\frac {(a+b x) \coth ^{-1}(a+b x)}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcCoth[a + b*x],x]

[Out]

((a + b*x)*ArcCoth[a + b*x])/b + Log[1 - (a + b*x)^2]/(2*b)

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 6022

Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcCoth[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6239

Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcCoth[x])^p, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \coth ^{-1}(a+b x) \, dx &=\frac {\text {Subst}\left (\int \coth ^{-1}(x) \, dx,x,a+b x\right )}{b}\\ &=\frac {(a+b x) \coth ^{-1}(a+b x)}{b}-\frac {\text {Subst}\left (\int \frac {x}{1-x^2} \, dx,x,a+b x\right )}{b}\\ &=\frac {(a+b x) \coth ^{-1}(a+b x)}{b}+\frac {\log \left (1-(a+b x)^2\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 43, normalized size = 1.23 \begin {gather*} x \coth ^{-1}(a+b x)+\frac {-((-1+a) \log (1-a-b x))+(1+a) \log (1+a+b x)}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcCoth[a + b*x],x]

[Out]

x*ArcCoth[a + b*x] + (-((-1 + a)*Log[1 - a - b*x]) + (1 + a)*Log[1 + a + b*x])/(2*b)

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 30, normalized size = 0.86

method result size
derivativedivides \(\frac {\left (b x +a \right ) \mathrm {arccoth}\left (b x +a \right )+\frac {\ln \left (\left (b x +a \right )^{2}-1\right )}{2}}{b}\) \(30\)
default \(\frac {\left (b x +a \right ) \mathrm {arccoth}\left (b x +a \right )+\frac {\ln \left (\left (b x +a \right )^{2}-1\right )}{2}}{b}\) \(30\)
risch \(\frac {x \ln \left (b x +a +1\right )}{2}-\frac {x \ln \left (b x +a -1\right )}{2}-\frac {\ln \left (b x +a -1\right ) a}{2 b}+\frac {\ln \left (-b x -a -1\right ) a}{2 b}+\frac {\ln \left (b x +a -1\right )}{2 b}+\frac {\ln \left (-b x -a -1\right )}{2 b}\) \(78\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccoth(b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/b*((b*x+a)*arccoth(b*x+a)+1/2*ln((b*x+a)^2-1))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 31, normalized size = 0.89 \begin {gather*} \frac {2 \, {\left (b x + a\right )} \operatorname {arcoth}\left (b x + a\right ) + \log \left (-{\left (b x + a\right )}^{2} + 1\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(b*x+a),x, algorithm="maxima")

[Out]

1/2*(2*(b*x + a)*arccoth(b*x + a) + log(-(b*x + a)^2 + 1))/b

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 48, normalized size = 1.37 \begin {gather*} \frac {b x \log \left (\frac {b x + a + 1}{b x + a - 1}\right ) + {\left (a + 1\right )} \log \left (b x + a + 1\right ) - {\left (a - 1\right )} \log \left (b x + a - 1\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(b*x+a),x, algorithm="fricas")

[Out]

1/2*(b*x*log((b*x + a + 1)/(b*x + a - 1)) + (a + 1)*log(b*x + a + 1) - (a - 1)*log(b*x + a - 1))/b

________________________________________________________________________________________

Sympy [A]
time = 0.19, size = 41, normalized size = 1.17 \begin {gather*} \begin {cases} \frac {a \operatorname {acoth}{\left (a + b x \right )}}{b} + x \operatorname {acoth}{\left (a + b x \right )} + \frac {\log {\left (a + b x + 1 \right )}}{b} - \frac {\operatorname {acoth}{\left (a + b x \right )}}{b} & \text {for}\: b \neq 0 \\x \operatorname {acoth}{\left (a \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acoth(b*x+a),x)

[Out]

Piecewise((a*acoth(a + b*x)/b + x*acoth(a + b*x) + log(a + b*x + 1)/b - acoth(a + b*x)/b, Ne(b, 0)), (x*acoth(
a), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (33) = 66\).
time = 0.40, size = 197, normalized size = 5.63 \begin {gather*} \frac {1}{2} \, {\left ({\left (a + 1\right )} b - {\left (a - 1\right )} b\right )} {\left (\frac {\log \left (\frac {{\left | b x + a + 1 \right |}}{{\left | b x + a - 1 \right |}}\right )}{b^{2}} - \frac {\log \left ({\left | \frac {b x + a + 1}{b x + a - 1} - 1 \right |}\right )}{b^{2}} + \frac {\log \left (-\frac {\frac {1}{a - \frac {{\left (\frac {{\left (b x + a + 1\right )} {\left (a - 1\right )}}{b x + a - 1} - a - 1\right )} b}{\frac {{\left (b x + a + 1\right )} b}{b x + a - 1} - b}} + 1}{\frac {1}{a - \frac {{\left (\frac {{\left (b x + a + 1\right )} {\left (a - 1\right )}}{b x + a - 1} - a - 1\right )} b}{\frac {{\left (b x + a + 1\right )} b}{b x + a - 1} - b}} - 1}\right )}{b^{2} {\left (\frac {b x + a + 1}{b x + a - 1} - 1\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccoth(b*x+a),x, algorithm="giac")

[Out]

1/2*((a + 1)*b - (a - 1)*b)*(log(abs(b*x + a + 1)/abs(b*x + a - 1))/b^2 - log(abs((b*x + a + 1)/(b*x + a - 1)
- 1))/b^2 + log(-(1/(a - ((b*x + a + 1)*(a - 1)/(b*x + a - 1) - a - 1)*b/((b*x + a + 1)*b/(b*x + a - 1) - b))
+ 1)/(1/(a - ((b*x + a + 1)*(a - 1)/(b*x + a - 1) - a - 1)*b/((b*x + a + 1)*b/(b*x + a - 1) - b)) - 1))/(b^2*(
(b*x + a + 1)/(b*x + a - 1) - 1)))

________________________________________________________________________________________

Mupad [B]
time = 1.71, size = 42, normalized size = 1.20 \begin {gather*} \frac {\frac {\ln \left (a^2+2\,a\,b\,x+b^2\,x^2-1\right )}{2}+a\,\mathrm {acoth}\left (a+b\,x\right )}{b}+x\,\mathrm {acoth}\left (a+b\,x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(acoth(a + b*x),x)

[Out]

(log(a^2 + b^2*x^2 + 2*a*b*x - 1)/2 + a*acoth(a + b*x))/b + x*acoth(a + b*x)

________________________________________________________________________________________