3.1.90 \(\int e^{-\frac {1}{2} \coth ^{-1}(a x)} \, dx\) [90]

Optimal. Leaf size=97 \[ \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x+\frac {\text {ArcTan}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a} \]

[Out]

(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x+arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a-arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^
(1/4))/a

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {6305, 96, 95, 304, 209, 212} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}+x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(-1/2*ArcCoth[a*x]),x]

[Out]

(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x + ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/a - ArcTanh[(1 + 1
/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)]/a

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 6305

Int[E^(ArcCoth[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /
; FreeQ[{a, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int e^{-\frac {1}{2} \coth ^{-1}(a x)} \, dx &=-\text {Subst}\left (\int \frac {\sqrt [4]{1-\frac {x}{a}}}{x^2 \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x+\frac {\text {Subst}\left (\int \frac {1}{x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 a}\\ &=\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x+\frac {2 \text {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}\\ &=\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x-\frac {\text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}+\frac {\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}\\ &=\sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x+\frac {\tan ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}-\frac {\tanh ^{-1}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.03, size = 33, normalized size = 0.34 \begin {gather*} -\frac {8 e^{\frac {3}{2} \coth ^{-1}(a x)} \, _2F_1\left (\frac {3}{4},2;\frac {7}{4};e^{2 \coth ^{-1}(a x)}\right )}{3 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(-1/2*ArcCoth[a*x]),x]

[Out]

(-8*E^((3*ArcCoth[a*x])/2)*Hypergeometric2F1[3/4, 2, 7/4, E^(2*ArcCoth[a*x])])/(3*a)

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int \left (\frac {a x -1}{a x +1}\right )^{\frac {1}{4}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(1/4),x)

[Out]

int(((a*x-1)/(a*x+1))^(1/4),x)

________________________________________________________________________________________

Maxima [A]
time = 0.46, size = 111, normalized size = 1.14 \begin {gather*} -\frac {1}{2} \, a {\left (\frac {4 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{\frac {{\left (a x - 1\right )} a^{2}}{a x + 1} - a^{2}} + \frac {2 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{2}} + \frac {\log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} - \frac {\log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/4),x, algorithm="maxima")

[Out]

-1/2*a*(4*((a*x - 1)/(a*x + 1))^(1/4)/((a*x - 1)*a^2/(a*x + 1) - a^2) + 2*arctan(((a*x - 1)/(a*x + 1))^(1/4))/
a^2 + log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^2 - log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^2)

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 84, normalized size = 0.87 \begin {gather*} \frac {2 \, {\left (a x + 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 2 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) - \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) + \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{2 \, a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/4),x, algorithm="fricas")

[Out]

1/2*(2*(a*x + 1)*((a*x - 1)/(a*x + 1))^(1/4) - 2*arctan(((a*x - 1)/(a*x + 1))^(1/4)) - log(((a*x - 1)/(a*x + 1
))^(1/4) + 1) + log(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt [4]{\frac {a x - 1}{a x + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(1/4),x)

[Out]

Integral(((a*x - 1)/(a*x + 1))**(1/4), x)

________________________________________________________________________________________

Giac [A]
time = 0.42, size = 108, normalized size = 1.11 \begin {gather*} -\frac {1}{2} \, a {\left (\frac {2 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{2}} + \frac {\log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{2}} - \frac {\log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{2}} + \frac {4 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a^{2} {\left (\frac {a x - 1}{a x + 1} - 1\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(1/4),x, algorithm="giac")

[Out]

-1/2*a*(2*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^2 + log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^2 - log(abs(((a*x -
 1)/(a*x + 1))^(1/4) - 1))/a^2 + 4*((a*x - 1)/(a*x + 1))^(1/4)/(a^2*((a*x - 1)/(a*x + 1) - 1)))

________________________________________________________________________________________

Mupad [B]
time = 1.18, size = 79, normalized size = 0.81 \begin {gather*} \frac {2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{a-\frac {a\,\left (a\,x-1\right )}{a\,x+1}}-\frac {\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{a}-\frac {\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x - 1)/(a*x + 1))^(1/4),x)

[Out]

(2*((a*x - 1)/(a*x + 1))^(1/4))/(a - (a*(a*x - 1))/(a*x + 1)) - atan(((a*x - 1)/(a*x + 1))^(1/4))/a - atanh(((
a*x - 1)/(a*x + 1))^(1/4))/a

________________________________________________________________________________________