3.1.4 \(\int e^{\coth ^{-1}(a x)} \, dx\) [4]

Optimal. Leaf size=36 \[ \sqrt {1-\frac {1}{a^2 x^2}} x+\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a} \]

[Out]

arctanh((1-1/a^2/x^2)^(1/2))/a+x*(1-1/a^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.833, Rules used = {6303, 821, 272, 65, 214} \begin {gather*} x \sqrt {1-\frac {1}{a^2 x^2}}+\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x],x]

[Out]

Sqrt[1 - 1/(a^2*x^2)]*x + ArcTanh[Sqrt[1 - 1/(a^2*x^2)]]/a

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 6303

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.)), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)*Sq
rt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int e^{\coth ^{-1}(a x)} \, dx &=-\text {Subst}\left (\int \frac {1+\frac {x}{a}}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )\\ &=\sqrt {1-\frac {1}{a^2 x^2}} x-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=\sqrt {1-\frac {1}{a^2 x^2}} x-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a}\\ &=\sqrt {1-\frac {1}{a^2 x^2}} x+a \text {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )\\ &=\sqrt {1-\frac {1}{a^2 x^2}} x+\frac {\tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 41, normalized size = 1.14 \begin {gather*} \sqrt {1-\frac {1}{a^2 x^2}} x+\frac {\log \left (a \left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )}{a} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x],x]

[Out]

Sqrt[1 - 1/(a^2*x^2)]*x + Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x]/a

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(96\) vs. \(2(32)=64\).
time = 0.08, size = 97, normalized size = 2.69

method result size
risch \(\frac {a x -1}{a \sqrt {\frac {a x -1}{a x +1}}}+\frac {\ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right ) \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}\, \sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(90\)
default \(\frac {\left (a x -1\right ) \left (\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}+a \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}}\right )\right )}{\sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, a \sqrt {a^{2}}}\) \(97\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(a*x-1)*((a^2)^(1/2)*((a*x+1)*(a*x-1))^(1/2)+a*ln((a^2*x+(a^2)^(1/2)*((a*x+1)*(a*x-1))^(1/2))/(a^2)^(1/2)))/((
a*x-1)/(a*x+1))^(1/2)/((a*x+1)*(a*x-1))^(1/2)/a/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 90 vs. \(2 (32) = 64\).
time = 0.26, size = 90, normalized size = 2.50 \begin {gather*} -a {\left (\frac {2 \, \sqrt {\frac {a x - 1}{a x + 1}}}{\frac {{\left (a x - 1\right )} a^{2}}{a x + 1} - a^{2}} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2),x, algorithm="maxima")

[Out]

-a*(2*sqrt((a*x - 1)/(a*x + 1))/((a*x - 1)*a^2/(a*x + 1) - a^2) - log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + log
(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2)

________________________________________________________________________________________

Fricas [A]
time = 0.32, size = 64, normalized size = 1.78 \begin {gather*} \frac {{\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} + \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2),x, algorithm="fricas")

[Out]

((a*x + 1)*sqrt((a*x - 1)/(a*x + 1)) + log(sqrt((a*x - 1)/(a*x + 1)) + 1) - log(sqrt((a*x - 1)/(a*x + 1)) - 1)
)/a

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\frac {a x - 1}{a x + 1}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2),x)

[Out]

Integral(1/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 57, normalized size = 1.58 \begin {gather*} -\frac {\log \left ({\left | -x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1} \right |}\right )}{{\left | a \right |} \mathrm {sgn}\left (a x + 1\right )} + \frac {\sqrt {a^{2} x^{2} - 1}}{a \mathrm {sgn}\left (a x + 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2),x, algorithm="giac")

[Out]

-log(abs(-x*abs(a) + sqrt(a^2*x^2 - 1)))/(abs(a)*sgn(a*x + 1)) + sqrt(a^2*x^2 - 1)/(a*sgn(a*x + 1))

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 58, normalized size = 1.61 \begin {gather*} \frac {2\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{a-\frac {a\,\left (a\,x-1\right )}{a\,x+1}}+\frac {2\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x - 1)/(a*x + 1))^(1/2),x)

[Out]

(2*((a*x - 1)/(a*x + 1))^(1/2))/(a - (a*(a*x - 1))/(a*x + 1)) + (2*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/a

________________________________________________________________________________________