3.3.81 \(\int e^{\coth ^{-1}(x)} (1-x) x \, dx\) [281]

Optimal. Leaf size=18 \[ -\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3 \]

[Out]

-1/3*(1-1/x^2)^(3/2)*x^3

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {6310, 6313, 270} \begin {gather*} -\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[x]*(1 - x)*x,x]

[Out]

-1/3*((1 - x^(-2))^(3/2)*x^3)

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 6310

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6313

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[-c^n, Subst[Int[(c +
 d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\coth ^{-1}(x)} (1-x) x \, dx &=-\int e^{\coth ^{-1}(x)} \left (1-\frac {1}{x}\right ) x^2 \, dx\\ &=\text {Subst}\left (\int \frac {\sqrt {1-x^2}}{x^4} \, dx,x,\frac {1}{x}\right )\\ &=-\frac {1}{3} \left (1-\frac {1}{x^2}\right )^{3/2} x^3\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 21, normalized size = 1.17 \begin {gather*} -\frac {1}{3} \sqrt {1-\frac {1}{x^2}} x \left (-1+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[x]*(1 - x)*x,x]

[Out]

-1/3*(Sqrt[1 - x^(-2)]*x*(-1 + x^2))

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 22, normalized size = 1.22

method result size
gosper \(-\frac {\left (1+x \right ) \left (-1+x \right )^{2}}{3 \sqrt {\frac {-1+x}{1+x}}}\) \(22\)
default \(-\frac {\left (1+x \right ) \left (-1+x \right )^{2}}{3 \sqrt {\frac {-1+x}{1+x}}}\) \(22\)
risch \(-\frac {\left (x^{2}-1\right ) \left (-1+x \right )}{3 \sqrt {\frac {-1+x}{1+x}}}\) \(22\)
trager \(-\frac {\left (1+x \right ) \left (x^{2}-1\right ) \sqrt {-\frac {1-x}{1+x}}}{3}\) \(25\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/2)*(1-x)*x,x,method=_RETURNVERBOSE)

[Out]

-1/3*(1+x)*(-1+x)^2/((-1+x)/(1+x))^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 50 vs. \(2 (14) = 28\).
time = 0.27, size = 50, normalized size = 2.78 \begin {gather*} \frac {8 \, \left (\frac {x - 1}{x + 1}\right )^{\frac {3}{2}}}{3 \, {\left (\frac {3 \, {\left (x - 1\right )}}{x + 1} - \frac {3 \, {\left (x - 1\right )}^{2}}{{\left (x + 1\right )}^{2}} + \frac {{\left (x - 1\right )}^{3}}{{\left (x + 1\right )}^{3}} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)*x,x, algorithm="maxima")

[Out]

8/3*((x - 1)/(x + 1))^(3/2)/(3*(x - 1)/(x + 1) - 3*(x - 1)^2/(x + 1)^2 + (x - 1)^3/(x + 1)^3 - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 24, normalized size = 1.33 \begin {gather*} -\frac {1}{3} \, {\left (x^{3} + x^{2} - x - 1\right )} \sqrt {\frac {x - 1}{x + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)*x,x, algorithm="fricas")

[Out]

-1/3*(x^3 + x^2 - x - 1)*sqrt((x - 1)/(x + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \left (- \frac {x}{\sqrt {\frac {x}{x + 1} - \frac {1}{x + 1}}}\right )\, dx - \int \frac {x^{2}}{\sqrt {\frac {x}{x + 1} - \frac {1}{x + 1}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/2)*(1-x)*x,x)

[Out]

-Integral(-x/sqrt(x/(x + 1) - 1/(x + 1)), x) - Integral(x**2/sqrt(x/(x + 1) - 1/(x + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 15, normalized size = 0.83 \begin {gather*} -\frac {{\left (x^{2} - 1\right )}^{\frac {3}{2}}}{3 \, \mathrm {sgn}\left (x + 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/2)*(1-x)*x,x, algorithm="giac")

[Out]

-1/3*(x^2 - 1)^(3/2)/sgn(x + 1)

________________________________________________________________________________________

Mupad [B]
time = 1.21, size = 18, normalized size = 1.00 \begin {gather*} -\frac {{\left (\frac {x-1}{x+1}\right )}^{3/2}\,{\left (x+1\right )}^3}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x*(x - 1))/((x - 1)/(x + 1))^(1/2),x)

[Out]

-(((x - 1)/(x + 1))^(3/2)*(x + 1)^3)/3

________________________________________________________________________________________