3.1.42 \(\int e^{-2 \coth ^{-1}(a x)} x^3 \, dx\) [42]

Optimal. Leaf size=42 \[ -\frac {2 x}{a^3}+\frac {x^2}{a^2}-\frac {2 x^3}{3 a}+\frac {x^4}{4}+\frac {2 \log (1+a x)}{a^4} \]

[Out]

-2*x/a^3+x^2/a^2-2/3*x^3/a+1/4*x^4+2*ln(a*x+1)/a^4

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6302, 6261, 78} \begin {gather*} \frac {2 \log (a x+1)}{a^4}-\frac {2 x}{a^3}+\frac {x^2}{a^2}-\frac {2 x^3}{3 a}+\frac {x^4}{4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/E^(2*ArcCoth[a*x]),x]

[Out]

(-2*x)/a^3 + x^2/a^2 - (2*x^3)/(3*a) + x^4/4 + (2*Log[1 + a*x])/a^4

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 6261

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int e^{-2 \coth ^{-1}(a x)} x^3 \, dx &=-\int e^{-2 \tanh ^{-1}(a x)} x^3 \, dx\\ &=-\int \frac {x^3 (1-a x)}{1+a x} \, dx\\ &=-\int \left (\frac {2}{a^3}-\frac {2 x}{a^2}+\frac {2 x^2}{a}-x^3-\frac {2}{a^3 (1+a x)}\right ) \, dx\\ &=-\frac {2 x}{a^3}+\frac {x^2}{a^2}-\frac {2 x^3}{3 a}+\frac {x^4}{4}+\frac {2 \log (1+a x)}{a^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 42, normalized size = 1.00 \begin {gather*} -\frac {2 x}{a^3}+\frac {x^2}{a^2}-\frac {2 x^3}{3 a}+\frac {x^4}{4}+\frac {2 \log (1+a x)}{a^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/E^(2*ArcCoth[a*x]),x]

[Out]

(-2*x)/a^3 + x^2/a^2 - (2*x^3)/(3*a) + x^4/4 + (2*Log[1 + a*x])/a^4

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 42, normalized size = 1.00

method result size
norman \(-\frac {2 x}{a^{3}}+\frac {x^{2}}{a^{2}}-\frac {2 x^{3}}{3 a}+\frac {x^{4}}{4}+\frac {2 \ln \left (a x +1\right )}{a^{4}}\) \(39\)
risch \(-\frac {2 x}{a^{3}}+\frac {x^{2}}{a^{2}}-\frac {2 x^{3}}{3 a}+\frac {x^{4}}{4}+\frac {2 \ln \left (a x +1\right )}{a^{4}}\) \(39\)
default \(\frac {\frac {1}{4} a^{3} x^{4}-\frac {2}{3} a^{2} x^{3}+a \,x^{2}-2 x}{a^{3}}+\frac {2 \ln \left (a x +1\right )}{a^{4}}\) \(42\)
meijerg \(\frac {-\frac {a x \left (-15 a^{3} x^{3}+20 a^{2} x^{2}-30 a x +60\right )}{60}+\ln \left (a x +1\right )}{a^{4}}-\frac {\frac {a x \left (4 a^{2} x^{2}-6 a x +12\right )}{12}-\ln \left (a x +1\right )}{a^{4}}\) \(71\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a*x-1)/(a*x+1),x,method=_RETURNVERBOSE)

[Out]

1/a^3*(1/4*a^3*x^4-2/3*a^2*x^3+a*x^2-2*x)+2*ln(a*x+1)/a^4

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 43, normalized size = 1.02 \begin {gather*} \frac {3 \, a^{3} x^{4} - 8 \, a^{2} x^{3} + 12 \, a x^{2} - 24 \, x}{12 \, a^{3}} + \frac {2 \, \log \left (a x + 1\right )}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a*x-1)/(a*x+1),x, algorithm="maxima")

[Out]

1/12*(3*a^3*x^4 - 8*a^2*x^3 + 12*a*x^2 - 24*x)/a^3 + 2*log(a*x + 1)/a^4

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 42, normalized size = 1.00 \begin {gather*} \frac {3 \, a^{4} x^{4} - 8 \, a^{3} x^{3} + 12 \, a^{2} x^{2} - 24 \, a x + 24 \, \log \left (a x + 1\right )}{12 \, a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a*x-1)/(a*x+1),x, algorithm="fricas")

[Out]

1/12*(3*a^4*x^4 - 8*a^3*x^3 + 12*a^2*x^2 - 24*a*x + 24*log(a*x + 1))/a^4

________________________________________________________________________________________

Sympy [A]
time = 0.04, size = 37, normalized size = 0.88 \begin {gather*} \frac {x^{4}}{4} - \frac {2 x^{3}}{3 a} + \frac {x^{2}}{a^{2}} - \frac {2 x}{a^{3}} + \frac {2 \log {\left (a x + 1 \right )}}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a*x-1)/(a*x+1),x)

[Out]

x**4/4 - 2*x**3/(3*a) + x**2/a**2 - 2*x/a**3 + 2*log(a*x + 1)/a**4

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 47, normalized size = 1.12 \begin {gather*} \frac {3 \, a^{4} x^{4} - 8 \, a^{3} x^{3} + 12 \, a^{2} x^{2} - 24 \, a x}{12 \, a^{4}} + \frac {2 \, \log \left ({\left | a x + 1 \right |}\right )}{a^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a*x-1)/(a*x+1),x, algorithm="giac")

[Out]

1/12*(3*a^4*x^4 - 8*a^3*x^3 + 12*a^2*x^2 - 24*a*x)/a^4 + 2*log(abs(a*x + 1))/a^4

________________________________________________________________________________________

Mupad [B]
time = 1.17, size = 38, normalized size = 0.90 \begin {gather*} \frac {2\,\ln \left (a\,x+1\right )}{a^4}-\frac {2\,x}{a^3}+\frac {x^4}{4}-\frac {2\,x^3}{3\,a}+\frac {x^2}{a^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a*x - 1))/(a*x + 1),x)

[Out]

(2*log(a*x + 1))/a^4 - (2*x)/a^3 + x^4/4 - (2*x^3)/(3*a) + x^2/a^2

________________________________________________________________________________________