3.1.51 \(\int e^{-3 \coth ^{-1}(a x)} x^2 \, dx\) [51]

Optimal. Leaf size=116 \[ \frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {14 \sqrt {1-\frac {1}{a^2 x^2}} x}{3 a^2}-\frac {3 \sqrt {1-\frac {1}{a^2 x^2}} x^2}{2 a}+\frac {1}{3} \sqrt {1-\frac {1}{a^2 x^2}} x^3-\frac {11 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{2 a^3} \]

[Out]

-11/2*arctanh((1-1/a^2/x^2)^(1/2))/a^3+4*(1-1/a^2/x^2)^(1/2)/a^2/(a+1/x)+14/3*x*(1-1/a^2/x^2)^(1/2)/a^2-3/2*x^
2*(1-1/a^2/x^2)^(1/2)/a+1/3*x^3*(1-1/a^2/x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.61, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 9, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {6304, 6874, 277, 270, 272, 44, 65, 214, 665} \begin {gather*} -\frac {3 x^2 \sqrt {1-\frac {1}{a^2 x^2}}}{2 a}+\frac {14 x \sqrt {1-\frac {1}{a^2 x^2}}}{3 a^2}+\frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {1}{3} x^3 \sqrt {1-\frac {1}{a^2 x^2}}-\frac {11 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{2 a^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/E^(3*ArcCoth[a*x]),x]

[Out]

(4*Sqrt[1 - 1/(a^2*x^2)])/(a^2*(a + x^(-1))) + (14*Sqrt[1 - 1/(a^2*x^2)]*x)/(3*a^2) - (3*Sqrt[1 - 1/(a^2*x^2)]
*x^2)/(2*a) + (Sqrt[1 - 1/(a^2*x^2)]*x^3)/3 - (11*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/(2*a^3)

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 277

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
 - Dist[b*((m + n*(p + 1) + 1)/(a*(m + 1))), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 665

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a + c*x^2)^(p + 1)/
(2*c*d*(p + 1))), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 6304

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/
a)^((n - 1)/2)*Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] && IntegerQ[m]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int e^{-3 \coth ^{-1}(a x)} x^2 \, dx &=-\text {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^2}{x^4 \left (1+\frac {x}{a}\right ) \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )\\ &=-\text {Subst}\left (\int \left (\frac {1}{x^4 \sqrt {1-\frac {x^2}{a^2}}}-\frac {3}{a x^3 \sqrt {1-\frac {x^2}{a^2}}}+\frac {4}{a^2 x^2 \sqrt {1-\frac {x^2}{a^2}}}-\frac {4}{a^3 x \sqrt {1-\frac {x^2}{a^2}}}+\frac {4}{a^3 (a+x) \sqrt {1-\frac {x^2}{a^2}}}\right ) \, dx,x,\frac {1}{x}\right )\\ &=\frac {4 \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a^3}-\frac {4 \text {Subst}\left (\int \frac {1}{(a+x) \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a^3}-\frac {4 \text {Subst}\left (\int \frac {1}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a^2}+\frac {3 \text {Subst}\left (\int \frac {1}{x^3 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a}-\text {Subst}\left (\int \frac {1}{x^4 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {4 \sqrt {1-\frac {1}{a^2 x^2}} x}{a^2}+\frac {1}{3} \sqrt {1-\frac {1}{a^2 x^2}} x^3+\frac {2 \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{a^3}-\frac {2 \text {Subst}\left (\int \frac {1}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{3 a^2}+\frac {3 \text {Subst}\left (\int \frac {1}{x^2 \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a}\\ &=\frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {14 \sqrt {1-\frac {1}{a^2 x^2}} x}{3 a^2}-\frac {3 \sqrt {1-\frac {1}{a^2 x^2}} x^2}{2 a}+\frac {1}{3} \sqrt {1-\frac {1}{a^2 x^2}} x^3+\frac {3 \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{4 a^3}-\frac {4 \text {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a}\\ &=\frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {14 \sqrt {1-\frac {1}{a^2 x^2}} x}{3 a^2}-\frac {3 \sqrt {1-\frac {1}{a^2 x^2}} x^2}{2 a}+\frac {1}{3} \sqrt {1-\frac {1}{a^2 x^2}} x^3-\frac {4 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a^3}-\frac {3 \text {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{2 a}\\ &=\frac {4 \sqrt {1-\frac {1}{a^2 x^2}}}{a^2 \left (a+\frac {1}{x}\right )}+\frac {14 \sqrt {1-\frac {1}{a^2 x^2}} x}{3 a^2}-\frac {3 \sqrt {1-\frac {1}{a^2 x^2}} x^2}{2 a}+\frac {1}{3} \sqrt {1-\frac {1}{a^2 x^2}} x^3-\frac {11 \tanh ^{-1}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{2 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 75, normalized size = 0.65 \begin {gather*} \frac {\frac {a \sqrt {1-\frac {1}{a^2 x^2}} x \left (52+19 a x-7 a^2 x^2+2 a^3 x^3\right )}{1+a x}-33 \log \left (\left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )}{6 a^3} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/E^(3*ArcCoth[a*x]),x]

[Out]

((a*Sqrt[1 - 1/(a^2*x^2)]*x*(52 + 19*a*x - 7*a^2*x^2 + 2*a^3*x^3))/(1 + a*x) - 33*Log[(1 + Sqrt[1 - 1/(a^2*x^2
)])*x])/(6*a^3)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(470\) vs. \(2(98)=196\).
time = 0.10, size = 471, normalized size = 4.06

method result size
risch \(\frac {\left (2 a^{2} x^{2}-9 a x +28\right ) \left (a x +1\right ) \sqrt {\frac {a x -1}{a x +1}}}{6 a^{3}}+\frac {\left (-\frac {11 \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right )}{2 a^{2} \sqrt {a^{2}}}+\frac {4 \sqrt {a^{2} \left (x +\frac {1}{a}\right )^{2}-2 a \left (x +\frac {1}{a}\right )}}{a^{4} \left (x +\frac {1}{a}\right )}\right ) \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{a x -1}\) \(145\)
default \(-\frac {\left (9 \sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, a^{3} x^{3}-2 \sqrt {a^{2}}\, \left (\left (a x +1\right ) \left (a x -1\right )\right )^{\frac {3}{2}} a^{2} x^{2}+18 \sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, a^{2} x^{2}-9 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}-4 \sqrt {a^{2}}\, \left (\left (a x +1\right ) \left (a x -1\right )\right )^{\frac {3}{2}} a x -42 \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, \sqrt {a^{2}}\, a^{2} x^{2}+42 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}+9 \sqrt {a^{2}}\, \sqrt {a^{2} x^{2}-1}\, a x -18 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a^{2} x +10 \left (\left (a x +1\right ) \left (a x -1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}-84 \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, \sqrt {a^{2}}\, a x +84 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}}\right ) a^{2} x -9 \ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a -42 \sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}+42 a \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}}\right )\right ) \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}{6 a^{3} \sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, \left (a x -1\right )}\) \(471\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*((a*x-1)/(a*x+1))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*(9*(a^2*x^2-1)^(1/2)*(a^2)^(1/2)*a^3*x^3-2*(a^2)^(1/2)*((a*x+1)*(a*x-1))^(3/2)*a^2*x^2+18*(a^2*x^2-1)^(1/
2)*(a^2)^(1/2)*a^2*x^2-9*ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a^3*x^2-4*(a^2)^(1/2)*((a*x+1)*
(a*x-1))^(3/2)*a*x-42*((a*x+1)*(a*x-1))^(1/2)*(a^2)^(1/2)*a^2*x^2+42*ln((a^2*x+(a^2)^(1/2)*((a*x+1)*(a*x-1))^(
1/2))/(a^2)^(1/2))*a^3*x^2+9*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*a*x-18*ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^
2)^(1/2))*a^2*x+10*((a*x+1)*(a*x-1))^(3/2)*(a^2)^(1/2)-84*((a*x+1)*(a*x-1))^(1/2)*(a^2)^(1/2)*a*x+84*ln((a^2*x
+(a^2)^(1/2)*((a*x+1)*(a*x-1))^(1/2))/(a^2)^(1/2))*a^2*x-9*ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2
))*a-42*(a^2)^(1/2)*((a*x+1)*(a*x-1))^(1/2)+42*a*ln((a^2*x+(a^2)^(1/2)*((a*x+1)*(a*x-1))^(1/2))/(a^2)^(1/2)))/
a^3*((a*x-1)/(a*x+1))^(3/2)/(a^2)^(1/2)/((a*x+1)*(a*x-1))^(1/2)/(a*x-1)

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 186, normalized size = 1.60 \begin {gather*} -\frac {1}{6} \, a {\left (\frac {2 \, {\left (39 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} - 52 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}} + 21 \, \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{\frac {3 \, {\left (a x - 1\right )} a^{4}}{a x + 1} - \frac {3 \, {\left (a x - 1\right )}^{2} a^{4}}{{\left (a x + 1\right )}^{2}} + \frac {{\left (a x - 1\right )}^{3} a^{4}}{{\left (a x + 1\right )}^{3}} - a^{4}} + \frac {33 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{4}} - \frac {33 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{4}} - \frac {24 \, \sqrt {\frac {a x - 1}{a x + 1}}}{a^{4}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

-1/6*a*(2*(39*((a*x - 1)/(a*x + 1))^(5/2) - 52*((a*x - 1)/(a*x + 1))^(3/2) + 21*sqrt((a*x - 1)/(a*x + 1)))/(3*
(a*x - 1)*a^4/(a*x + 1) - 3*(a*x - 1)^2*a^4/(a*x + 1)^2 + (a*x - 1)^3*a^4/(a*x + 1)^3 - a^4) + 33*log(sqrt((a*
x - 1)/(a*x + 1)) + 1)/a^4 - 33*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^4 - 24*sqrt((a*x - 1)/(a*x + 1))/a^4)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 84, normalized size = 0.72 \begin {gather*} \frac {{\left (2 \, a^{3} x^{3} - 7 \, a^{2} x^{2} + 19 \, a x + 52\right )} \sqrt {\frac {a x - 1}{a x + 1}} - 33 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + 33 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{6 \, a^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/6*((2*a^3*x^3 - 7*a^2*x^2 + 19*a*x + 52)*sqrt((a*x - 1)/(a*x + 1)) - 33*log(sqrt((a*x - 1)/(a*x + 1)) + 1) +
 33*log(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^3

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Integral(x**2*((a*x - 1)/(a*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 156, normalized size = 1.34 \begin {gather*} \frac {7\,\sqrt {\frac {a\,x-1}{a\,x+1}}-\frac {52\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}}{3}+13\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}}{a^3+\frac {3\,a^3\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {a^3\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}-\frac {3\,a^3\,\left (a\,x-1\right )}{a\,x+1}}+\frac {4\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{a^3}-\frac {11\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

(7*((a*x - 1)/(a*x + 1))^(1/2) - (52*((a*x - 1)/(a*x + 1))^(3/2))/3 + 13*((a*x - 1)/(a*x + 1))^(5/2))/(a^3 + (
3*a^3*(a*x - 1)^2)/(a*x + 1)^2 - (a^3*(a*x - 1)^3)/(a*x + 1)^3 - (3*a^3*(a*x - 1))/(a*x + 1)) + (4*((a*x - 1)/
(a*x + 1))^(1/2))/a^3 - (11*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/a^3

________________________________________________________________________________________