3.9.25 \(\int e^{-3 \coth ^{-1}(a x)} (c-\frac {c}{a^2 x^2}) \, dx\) [825]

Optimal. Leaf size=76 \[ c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x-\frac {3 c \csc ^{-1}(a x)}{a}-\frac {3 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a} \]

[Out]

-3*c*arccsc(a*x)/a-3*c*arctanh((1-1/a/x)^(1/2)*(1+1/a/x)^(1/2))/a+c*(1-1/a/x)^(3/2)*x*(1+1/a/x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {6329, 100, 12, 132, 41, 222, 94, 214} \begin {gather*} c x \sqrt {\frac {1}{a x}+1} \left (1-\frac {1}{a x}\right )^{3/2}-\frac {3 c \csc ^{-1}(a x)}{a}-\frac {3 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c - c/(a^2*x^2))/E^(3*ArcCoth[a*x]),x]

[Out]

c*(1 - 1/(a*x))^(3/2)*Sqrt[1 + 1/(a*x)]*x - (3*c*ArcCsc[a*x])/a - (3*c*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a
*x)]])/a

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 94

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[b*d^(m
+ n)*f^p, Int[(a + b*x)^(m - 1)/(c + d*x)^m, x], x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandTo
Sum[(a + b*x)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n,
 -1]))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 6329

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[-c^p, Subst[Int[(1 - x/a)^(p
- n/2)*((1 + x/a)^(p + n/2)/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !Integ
erQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2]

Rubi steps

\begin {align*} \int e^{-3 \coth ^{-1}(a x)} \left (c-\frac {c}{a^2 x^2}\right ) \, dx &=-\left (c \text {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^{5/2}}{x^2 \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\right )\\ &=c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x+c \text {Subst}\left (\int \frac {3 \sqrt {1-\frac {x}{a}}}{a x \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )\\ &=c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x+\frac {(3 c) \text {Subst}\left (\int \frac {\sqrt {1-\frac {x}{a}}}{x \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x-\frac {(3 c) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a^2}+\frac {(3 c) \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x-\frac {(3 c) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a^2}-\frac {(3 c) \text {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a}} \, dx,x,\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a^2}\\ &=c \left (1-\frac {1}{a x}\right )^{3/2} \sqrt {1+\frac {1}{a x}} x-\frac {3 c \csc ^{-1}(a x)}{a}-\frac {3 c \tanh ^{-1}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 57, normalized size = 0.75 \begin {gather*} \frac {c \left (\sqrt {1-\frac {1}{a^2 x^2}} (-1+a x)-3 \text {ArcSin}\left (\frac {1}{a x}\right )-3 \log \left (\left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )\right )}{a} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(c - c/(a^2*x^2))/E^(3*ArcCoth[a*x]),x]

[Out]

(c*(Sqrt[1 - 1/(a^2*x^2)]*(-1 + a*x) - 3*ArcSin[1/(a*x)] - 3*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/a

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(233\) vs. \(2(68)=136\).
time = 0.11, size = 234, normalized size = 3.08

method result size
risch \(-\frac {\left (a x +1\right ) c \sqrt {\frac {a x -1}{a x +1}}}{x \,a^{2}}+\frac {\left (a \sqrt {\left (a x +1\right ) \left (a x -1\right )}-\frac {3 a^{2} \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right )}{\sqrt {a^{2}}}-3 a \arctan \left (\frac {1}{\sqrt {a^{2} x^{2}-1}}\right )\right ) c \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{a^{2} \left (a x -1\right )}\) \(135\)
default \(\frac {\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right )^{2} c \left (-\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}\, a^{2} x^{2}+\left (a^{2} x^{2}-1\right )^{\frac {3}{2}} \sqrt {a^{2}}-3 \sqrt {a^{2}}\, \sqrt {a^{2} x^{2}-1}\, a x -3 \sqrt {a^{2}}\, \arctan \left (\frac {1}{\sqrt {a^{2} x^{2}-1}}\right ) a x +4 \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, \sqrt {a^{2}}\, a x +\ln \left (\frac {a^{2} x +\sqrt {a^{2} x^{2}-1}\, \sqrt {a^{2}}}{\sqrt {a^{2}}}\right ) a^{2} x -4 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x +1\right ) \left (a x -1\right )}}{\sqrt {a^{2}}}\right ) a^{2} x \right )}{\left (a x -1\right ) \sqrt {\left (a x +1\right ) \left (a x -1\right )}\, a^{2} \sqrt {a^{2}}\, x}\) \(234\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a^2/x^2)*((a*x-1)/(a*x+1))^(3/2),x,method=_RETURNVERBOSE)

[Out]

((a*x-1)/(a*x+1))^(3/2)*(a*x+1)^2*c*(-(a^2*x^2-1)^(1/2)*(a^2)^(1/2)*a^2*x^2+(a^2*x^2-1)^(3/2)*(a^2)^(1/2)-3*(a
^2)^(1/2)*(a^2*x^2-1)^(1/2)*a*x-3*(a^2)^(1/2)*arctan(1/(a^2*x^2-1)^(1/2))*a*x+4*((a*x+1)*(a*x-1))^(1/2)*(a^2)^
(1/2)*a*x+ln((a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a^2*x-4*ln((a^2*x+(a^2)^(1/2)*((a*x+1)*(a*x-1)
)^(1/2))/(a^2)^(1/2))*a^2*x)/(a*x-1)/((a*x+1)*(a*x-1))^(1/2)/a^2/(a^2)^(1/2)/x

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 118, normalized size = 1.55 \begin {gather*} -{\left (\frac {4 \, c \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}{\frac {{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} - a^{2}} - \frac {6 \, c \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right )}{a^{2}} + \frac {3 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac {3 \, c \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2}}\right )} a \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

-(4*c*((a*x - 1)/(a*x + 1))^(3/2)/((a*x - 1)^2*a^2/(a*x + 1)^2 - a^2) - 6*c*arctan(sqrt((a*x - 1)/(a*x + 1)))/
a^2 + 3*c*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3*c*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2)*a

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 103, normalized size = 1.36 \begin {gather*} \frac {6 \, a c x \arctan \left (\sqrt {\frac {a x - 1}{a x + 1}}\right ) - 3 \, a c x \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + 3 \, a c x \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (a^{2} c x^{2} - c\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

(6*a*c*x*arctan(sqrt((a*x - 1)/(a*x + 1))) - 3*a*c*x*log(sqrt((a*x - 1)/(a*x + 1)) + 1) + 3*a*c*x*log(sqrt((a*
x - 1)/(a*x + 1)) - 1) + (a^2*c*x^2 - c)*sqrt((a*x - 1)/(a*x + 1)))/(a^2*x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {c \left (\int \frac {\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x^{3} + x^{2}}\, dx + \int \left (- \frac {a \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x^{2} + x}\right )\, dx + \int \left (- \frac {a^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\right )\, dx + \int \frac {a^{3} x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a x + 1}\, dx\right )}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a**2/x**2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

c*(Integral(sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x**3 + x**2), x) + Integral(-a*sqrt(a*x/(a*x + 1) - 1/(a*x +
1))/(a*x**2 + x), x) + Integral(-a**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x) + Integral(a**3*x*sqrt(a
*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1), x))/a**2

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 122, normalized size = 1.61 \begin {gather*} \frac {6 \, c \arctan \left (-x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1}\right ) \mathrm {sgn}\left (a x + 1\right )}{a} + \frac {3 \, c \log \left ({\left | -x {\left | a \right |} + \sqrt {a^{2} x^{2} - 1} \right |}\right ) \mathrm {sgn}\left (a x + 1\right )}{{\left | a \right |}} + \frac {\sqrt {a^{2} x^{2} - 1} c \mathrm {sgn}\left (a x + 1\right )}{a} - \frac {2 \, c \mathrm {sgn}\left (a x + 1\right )}{{\left ({\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} - 1}\right )}^{2} + 1\right )} {\left | a \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a^2/x^2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

6*c*arctan(-x*abs(a) + sqrt(a^2*x^2 - 1))*sgn(a*x + 1)/a + 3*c*log(abs(-x*abs(a) + sqrt(a^2*x^2 - 1)))*sgn(a*x
 + 1)/abs(a) + sqrt(a^2*x^2 - 1)*c*sgn(a*x + 1)/a - 2*c*sgn(a*x + 1)/(((x*abs(a) - sqrt(a^2*x^2 - 1))^2 + 1)*a
bs(a))

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 84, normalized size = 1.11 \begin {gather*} \frac {6\,c\,\mathrm {atan}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a}-\frac {6\,c\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a}+\frac {4\,c\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}}{a-\frac {a\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/(a^2*x^2))*((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

(6*c*atan(((a*x - 1)/(a*x + 1))^(1/2)))/a - (6*c*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/a + (4*c*((a*x - 1)/(a*x
+ 1))^(3/2))/(a - (a*(a*x - 1)^2)/(a*x + 1)^2)

________________________________________________________________________________________