3.9.92 \(\int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^3} \, dx\) [892]

Optimal. Leaf size=137 \[ a^2 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {a \sqrt {c-\frac {c}{a^2 x^2}} (1+a x)}{3 x}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}+\frac {a^3 \sqrt {c-\frac {c}{a^2 x^2}} x \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{\sqrt {1-a x} \sqrt {1+a x}} \]

[Out]

a^2*(c-c/a^2/x^2)^(1/2)+1/3*a*(a*x+1)*(c-c/a^2/x^2)^(1/2)/x+1/3*(a*x+1)^2*(c-c/a^2/x^2)^(1/2)/x^2+a^3*x*arctan
h((-a*x+1)^(1/2)*(a*x+1)^(1/2))*(c-c/a^2/x^2)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.37, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6302, 6294, 6264, 98, 96, 94, 214} \begin {gather*} a^2 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {a (a x+1) \sqrt {c-\frac {c}{a^2 x^2}}}{3 x}+\frac {(a x+1)^2 \sqrt {c-\frac {c}{a^2 x^2}}}{3 x^2}+\frac {a^3 x \sqrt {c-\frac {c}{a^2 x^2}} \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {a x+1}\right )}{\sqrt {1-a x} \sqrt {a x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)])/x^3,x]

[Out]

a^2*Sqrt[c - c/(a^2*x^2)] + (a*Sqrt[c - c/(a^2*x^2)]*(1 + a*x))/(3*x) + (Sqrt[c - c/(a^2*x^2)]*(1 + a*x)^2)/(3
*x^2) + (a^3*Sqrt[c - c/(a^2*x^2)]*x*ArcTanh[Sqrt[1 - a*x]*Sqrt[1 + a*x]])/(Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 94

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6264

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[u*(1 + d*(x/c))^
p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6294

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[x^(2*p)*((c + d/x^2)^p/((
1 - a*x)^p*(1 + a*x)^p)), Int[(u/x^(2*p))*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d
, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^3} \, dx &=-\int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^3} \, dx\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{2 \tanh ^{-1}(a x)} \sqrt {1-a x} \sqrt {1+a x}}{x^4} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1+a x)^{3/2}}{x^4 \sqrt {1-a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}-\frac {\left (2 a \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1+a x)^{3/2}}{x^3 \sqrt {1-a x}} \, dx}{3 \sqrt {1-a x} \sqrt {1+a x}}\\ &=\frac {a \sqrt {c-\frac {c}{a^2 x^2}} (1+a x)}{3 x}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}-\frac {\left (a^2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {\sqrt {1+a x}}{x^2 \sqrt {1-a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=a^2 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {a \sqrt {c-\frac {c}{a^2 x^2}} (1+a x)}{3 x}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}-\frac {\left (a^3 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=a^2 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {a \sqrt {c-\frac {c}{a^2 x^2}} (1+a x)}{3 x}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}+\frac {\left (a^4 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \text {Subst}\left (\int \frac {1}{a-a x^2} \, dx,x,\sqrt {1-a x} \sqrt {1+a x}\right )}{\sqrt {1-a x} \sqrt {1+a x}}\\ &=a^2 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {a \sqrt {c-\frac {c}{a^2 x^2}} (1+a x)}{3 x}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1+a x)^2}{3 x^2}+\frac {a^3 \sqrt {c-\frac {c}{a^2 x^2}} x \tanh ^{-1}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{\sqrt {1-a x} \sqrt {1+a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 86, normalized size = 0.63 \begin {gather*} \frac {\sqrt {c-\frac {c}{a^2 x^2}} \left (\sqrt {-1+a^2 x^2} \left (1+3 a x+5 a^2 x^2\right )-3 a^3 x^3 \text {ArcTan}\left (\frac {1}{\sqrt {-1+a^2 x^2}}\right )\right )}{3 x^2 \sqrt {-1+a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)])/x^3,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(Sqrt[-1 + a^2*x^2]*(1 + 3*a*x + 5*a^2*x^2) - 3*a^3*x^3*ArcTan[1/Sqrt[-1 + a^2*x^2]]))/
(3*x^2*Sqrt[-1 + a^2*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(377\) vs. \(2(117)=234\).
time = 0.12, size = 378, normalized size = 2.76

method result size
risch \(\frac {\left (5 a^{4} x^{4}+3 a^{3} x^{3}-4 a^{2} x^{2}-3 a x -1\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}}{3 x^{2} \left (a^{2} x^{2}-1\right )}-\frac {a^{3} \ln \left (\frac {-2 c +2 \sqrt {-c}\, \sqrt {a^{2} c \,x^{2}-c}}{x}\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {c \left (a^{2} x^{2}-1\right )}\, x}{\sqrt {-c}\, \left (a^{2} x^{2}-1\right )}\) \(151\)
default \(-\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, a \left (-6 \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, \sqrt {-\frac {c}{a^{2}}}\, a^{3} c \,x^{4}+6 \left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}\, a^{3} x^{2}+3 \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, \sqrt {-\frac {c}{a^{2}}}\, a^{2} c \,x^{3}+6 c^{\frac {3}{2}} \ln \left (\sqrt {c}\, x +\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\right ) \sqrt {-\frac {c}{a^{2}}}\, a \,x^{3}-6 c^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}\, \ln \left (\frac {\sqrt {\frac {c \left (a x +1\right ) \left (a x -1\right )}{a^{2}}}\, \sqrt {c}+c x}{\sqrt {c}}\right ) a \,x^{3}-6 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a x +1\right ) \left (a x -1\right )}{a^{2}}}\, a^{2} c \,x^{3}+3 \left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}\, a^{2} x +3 \ln \left (\frac {2 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2}-2 c}{a^{2} x}\right ) c^{2} x^{3}+a \left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}\right )}{3 x^{2} \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, \sqrt {-\frac {c}{a^{2}}}\, c}\) \(378\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x-1)*(a*x+1)*(c-c/a^2/x^2)^(1/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/3*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/x^2*a*(-6*(c*(a^2*x^2-1)/a^2)^(1/2)*(-c/a^2)^(1/2)*a^3*c*x^4+6*(c*(a^2*x^2-
1)/a^2)^(3/2)*(-c/a^2)^(1/2)*a^3*x^2+3*(c*(a^2*x^2-1)/a^2)^(1/2)*(-c/a^2)^(1/2)*a^2*c*x^3+6*c^(3/2)*ln(c^(1/2)
*x+(c*(a^2*x^2-1)/a^2)^(1/2))*(-c/a^2)^(1/2)*a*x^3-6*c^(3/2)*(-c/a^2)^(1/2)*ln(((c*(a*x+1)*(a*x-1)/a^2)^(1/2)*
c^(1/2)+c*x)/c^(1/2))*a*x^3-6*(-c/a^2)^(1/2)*(c*(a*x+1)*(a*x-1)/a^2)^(1/2)*a^2*c*x^3+3*(c*(a^2*x^2-1)/a^2)^(3/
2)*(-c/a^2)^(1/2)*a^2*x+3*ln(2*((-c/a^2)^(1/2)*(c*(a^2*x^2-1)/a^2)^(1/2)*a^2-c)/a^2/x)*c^2*x^3+a*(c*(a^2*x^2-1
)/a^2)^(3/2)*(-c/a^2)^(1/2))/(c*(a^2*x^2-1)/a^2)^(1/2)/(-c/a^2)^(1/2)/c

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a^2/x^2)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a^2*x^2))/((a*x - 1)*x^3), x)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 201, normalized size = 1.47 \begin {gather*} \left [\frac {3 \, a^{2} \sqrt {-c} x^{2} \log \left (-\frac {a^{2} c x^{2} + 2 \, a \sqrt {-c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - 2 \, c}{x^{2}}\right ) + 2 \, {\left (5 \, a^{2} x^{2} + 3 \, a x + 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{6 \, x^{2}}, -\frac {3 \, a^{2} \sqrt {c} x^{2} \arctan \left (\frac {a \sqrt {c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right ) - {\left (5 \, a^{2} x^{2} + 3 \, a x + 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{3 \, x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a^2/x^2)^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/6*(3*a^2*sqrt(-c)*x^2*log(-(a^2*c*x^2 + 2*a*sqrt(-c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - 2*c)/x^2) + 2*(5*a
^2*x^2 + 3*a*x + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x^2, -1/3*(3*a^2*sqrt(c)*x^2*arctan(a*sqrt(c)*x*sqrt((a^2
*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^2 - c)) - (5*a^2*x^2 + 3*a*x + 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x^2]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x + 1\right )}{x^{3} \left (a x - 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a**2/x**2)**(1/2)/x**3,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x + 1)/(x**3*(a*x - 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.73, size = 231, normalized size = 1.69 \begin {gather*} \frac {2}{3} \, {\left (3 \, a \sqrt {c} \arctan \left (-\frac {\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}}{\sqrt {c}}\right ) \mathrm {sgn}\left (x\right ) - \frac {3 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{5} a c \mathrm {sgn}\left (x\right ) - 3 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{4} c^{\frac {3}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) - 12 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} c^{\frac {5}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) - 3 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )} a c^{3} \mathrm {sgn}\left (x\right ) - 5 \, c^{\frac {7}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right )}{{\left ({\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} + c\right )}^{3}}\right )} {\left | a \right |} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a^2/x^2)^(1/2)/x^3,x, algorithm="giac")

[Out]

2/3*(3*a*sqrt(c)*arctan(-(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))/sqrt(c))*sgn(x) - (3*(sqrt(a^2*c)*x - sqrt(a^2*
c*x^2 - c))^5*a*c*sgn(x) - 3*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^4*c^(3/2)*abs(a)*sgn(x) - 12*(sqrt(a^2*c)*x
 - sqrt(a^2*c*x^2 - c))^2*c^(5/2)*abs(a)*sgn(x) - 3*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))*a*c^3*sgn(x) - 5*c^(
7/2)*abs(a)*sgn(x))/((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^2 + c)^3)*abs(a)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x+1\right )}{x^3\,\left (a\,x-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(x^3*(a*x - 1)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x + 1))/(x^3*(a*x - 1)), x)

________________________________________________________________________________________