3.1.40 \(\int x^2 \text {Erf}(d (a+b \log (c x^n))) \, dx\) [40]

Optimal. Leaf size=102 \[ \frac {1}{3} x^3 \text {Erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {1}{3} e^{\frac {9-12 a b d^2 n}{4 b^2 d^2 n^2}} x^3 \left (c x^n\right )^{-3/n} \text {Erf}\left (\frac {2 a b d^2-\frac {3}{n}+2 b^2 d^2 \log \left (c x^n\right )}{2 b d}\right ) \]

[Out]

1/3*x^3*erf(d*(a+b*ln(c*x^n)))-1/3*exp(1/4*(-12*a*b*d^2*n+9)/b^2/d^2/n^2)*x^3*erf(1/2*(2*a*b*d^2-3/n+2*b^2*d^2
*ln(c*x^n))/b/d)/((c*x^n)^(3/n))

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {6536, 2314, 2308, 2266, 2236} \begin {gather*} \frac {1}{3} x^3 \text {Erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {1}{3} x^3 \left (c x^n\right )^{-3/n} e^{\frac {9-12 a b d^2 n}{4 b^2 d^2 n^2}} \text {Erf}\left (\frac {2 a b d^2+2 b^2 d^2 \log \left (c x^n\right )-\frac {3}{n}}{2 b d}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Erf[d*(a + b*Log[c*x^n])],x]

[Out]

(x^3*Erf[d*(a + b*Log[c*x^n])])/3 - (E^((9 - 12*a*b*d^2*n)/(4*b^2*d^2*n^2))*x^3*Erf[(2*a*b*d^2 - 3/n + 2*b^2*d
^2*Log[c*x^n])/(2*b*d)])/(3*(c*x^n)^(3/n))

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 2266

Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]

Rule 2308

Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
 :> Dist[(g + h*x)^(m + 1)/(h*n*(c*(d + e*x)^n)^((m + 1)/n)), Subst[Int[E^(a*f*Log[F] + ((m + 1)*x)/n + b*f*Lo
g[F]*x^2), x], x, Log[c*(d + e*x)^n]], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0]

Rule 2314

Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
 :> Dist[(g + h*x)^m*((c*(d + e*x)^n)^(2*a*b*f*Log[F])/(d + e*x)^(m + 2*a*b*f*n*Log[F])), Int[(d + e*x)^(m + 2
*a*b*f*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x]
 && EqQ[e*g - d*h, 0]

Rule 6536

Int[Erf[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*(Erf[
d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Dist[2*b*d*(n/(Sqrt[Pi]*(m + 1))), Int[(e*x)^m/E^(d*(a + b*Log[c*x^n]
))^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int x^2 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {(2 b d n) \int e^{-d^2 \left (a+b \log \left (c x^n\right )\right )^2} x^2 \, dx}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {(2 b d n) \int \exp \left (-a^2 d^2-2 a b d^2 \log \left (c x^n\right )-b^2 d^2 \log ^2\left (c x^n\right )\right ) x^2 \, dx}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {(2 b d n) \int e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} x^2 \left (c x^n\right )^{-2 a b d^2} \, dx}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {\left (2 b d n x^{2 a b d^2 n} \left (c x^n\right )^{-2 a b d^2}\right ) \int e^{-a^2 d^2-b^2 d^2 \log ^2\left (c x^n\right )} x^{2-2 a b d^2 n} \, dx}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {\left (2 b d x^3 \left (c x^n\right )^{-2 a b d^2-\frac {3-2 a b d^2 n}{n}}\right ) \text {Subst}\left (\int \exp \left (-a^2 d^2+\frac {\left (3-2 a b d^2 n\right ) x}{n}-b^2 d^2 x^2\right ) \, dx,x,\log \left (c x^n\right )\right )}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {\left (2 b d e^{\frac {9-12 a b d^2 n}{4 b^2 d^2 n^2}} x^3 \left (c x^n\right )^{-2 a b d^2-\frac {3-2 a b d^2 n}{n}}\right ) \text {Subst}\left (\int \exp \left (-\frac {\left (\frac {3-2 a b d^2 n}{n}-2 b^2 d^2 x\right )^2}{4 b^2 d^2}\right ) \, dx,x,\log \left (c x^n\right )\right )}{3 \sqrt {\pi }}\\ &=\frac {1}{3} x^3 \text {erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-\frac {1}{3} e^{\frac {9-12 a b d^2 n}{4 b^2 d^2 n^2}} x^3 \left (c x^n\right )^{-3/n} \text {erf}\left (\frac {2 a b d^2-\frac {3}{n}+2 b^2 d^2 \log \left (c x^n\right )}{2 b d}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 88, normalized size = 0.86 \begin {gather*} \frac {1}{3} \left (x^3 \text {Erf}\left (d \left (a+b \log \left (c x^n\right )\right )\right )-e^{-\frac {3 \left (\frac {-\frac {3}{d^2}+4 a b n}{b^2}+4 n \log \left (c x^n\right )\right )}{4 n^2}} x^3 \text {Erf}\left (a d-\frac {3}{2 b d n}+b d \log \left (c x^n\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Erf[d*(a + b*Log[c*x^n])],x]

[Out]

(x^3*Erf[d*(a + b*Log[c*x^n])] - (x^3*Erf[a*d - 3/(2*b*d*n) + b*d*Log[c*x^n]])/E^((3*((-3/d^2 + 4*a*b*n)/b^2 +
 4*n*Log[c*x^n]))/(4*n^2)))/3

________________________________________________________________________________________

Maple [F]
time = 0.08, size = 0, normalized size = 0.00 \[\int x^{2} \erf \left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*erf(d*(a+b*ln(c*x^n))),x)

[Out]

int(x^2*erf(d*(a+b*ln(c*x^n))),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*erf(d*(a+b*log(c*x^n))),x, algorithm="maxima")

[Out]

1/3*x^3*erf(b*d*log(x^n) + (b*log(c) + a)*d) - 2/3*b*d*n*integrate(x^2*e^(-b^2*d^2*log(c)^2 - 2*b^2*d^2*log(c)
*log(x^n) - b^2*d^2*log(x^n)^2 - 2*a*b*d^2*log(x^n) - a^2*d^2), x)/(sqrt(pi)*c^(2*a*b*d^2))

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 125, normalized size = 1.23 \begin {gather*} \frac {1}{3} \, x^{3} \operatorname {erf}\left (b d \log \left (c x^{n}\right ) + a d\right ) - \frac {1}{3} \, \sqrt {b^{2} d^{2} n^{2}} \operatorname {erf}\left (\frac {{\left (2 \, b^{2} d^{2} n^{2} \log \left (x\right ) + 2 \, b^{2} d^{2} n \log \left (c\right ) + 2 \, a b d^{2} n - 3\right )} \sqrt {b^{2} d^{2} n^{2}}}{2 \, b^{2} d^{2} n^{2}}\right ) e^{\left (-\frac {3 \, {\left (4 \, b^{2} d^{2} n \log \left (c\right ) + 4 \, a b d^{2} n - 3\right )}}{4 \, b^{2} d^{2} n^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*erf(d*(a+b*log(c*x^n))),x, algorithm="fricas")

[Out]

1/3*x^3*erf(b*d*log(c*x^n) + a*d) - 1/3*sqrt(b^2*d^2*n^2)*erf(1/2*(2*b^2*d^2*n^2*log(x) + 2*b^2*d^2*n*log(c) +
 2*a*b*d^2*n - 3)*sqrt(b^2*d^2*n^2)/(b^2*d^2*n^2))*e^(-3/4*(4*b^2*d^2*n*log(c) + 4*a*b*d^2*n - 3)/(b^2*d^2*n^2
))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \operatorname {erf}{\left (a d + b d \log {\left (c x^{n} \right )} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*erf(d*(a+b*ln(c*x**n))),x)

[Out]

Integral(x**2*erf(a*d + b*d*log(c*x**n)), x)

________________________________________________________________________________________

Giac [A]
time = 0.59, size = 85, normalized size = 0.83 \begin {gather*} \frac {1}{3} \, x^{3} \operatorname {erf}\left (b d n \log \left (x\right ) + b d \log \left (c\right ) + a d\right ) + \frac {\operatorname {erf}\left (-b d n \log \left (x\right ) - b d \log \left (c\right ) - a d + \frac {3}{2 \, b d n}\right ) e^{\left (-\frac {3 \, a}{b n} + \frac {9}{4 \, b^{2} d^{2} n^{2}}\right )}}{3 \, c^{\frac {3}{n}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*erf(d*(a+b*log(c*x^n))),x, algorithm="giac")

[Out]

1/3*x^3*erf(b*d*n*log(x) + b*d*log(c) + a*d) + 1/3*erf(-b*d*n*log(x) - b*d*log(c) - a*d + 3/2/(b*d*n))*e^(-3*a
/(b*n) + 9/4/(b^2*d^2*n^2))/c^(3/n)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,\mathrm {erf}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*erf(d*(a + b*log(c*x^n))),x)

[Out]

int(x^2*erf(d*(a + b*log(c*x^n))), x)

________________________________________________________________________________________