3.1.67 \(\int x^3 \log ^3(x) \, dx\) [67]

Optimal. Leaf size=39 \[ -\frac {3 x^4}{128}+\frac {3}{32} x^4 \log (x)-\frac {3}{16} x^4 \log ^2(x)+\frac {1}{4} x^4 \log ^3(x) \]

[Out]

-3/128*x^4+3/32*x^4*ln(x)-3/16*x^4*ln(x)^2+1/4*x^4*ln(x)^3

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2342, 2341} \begin {gather*} -\frac {3 x^4}{128}+\frac {1}{4} x^4 \log ^3(x)-\frac {3}{16} x^4 \log ^2(x)+\frac {3}{32} x^4 \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*Log[x]^3,x]

[Out]

(-3*x^4)/128 + (3*x^4*Log[x])/32 - (3*x^4*Log[x]^2)/16 + (x^4*Log[x]^3)/4

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2342

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Lo
g[c*x^n])^p/(d*(m + 1))), x] - Dist[b*n*(p/(m + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rubi steps

\begin {align*} \int x^3 \log ^3(x) \, dx &=\frac {1}{4} x^4 \log ^3(x)-\frac {3}{4} \int x^3 \log ^2(x) \, dx\\ &=-\frac {3}{16} x^4 \log ^2(x)+\frac {1}{4} x^4 \log ^3(x)+\frac {3}{8} \int x^3 \log (x) \, dx\\ &=-\frac {3 x^4}{128}+\frac {3}{32} x^4 \log (x)-\frac {3}{16} x^4 \log ^2(x)+\frac {1}{4} x^4 \log ^3(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 39, normalized size = 1.00 \begin {gather*} -\frac {3 x^4}{128}+\frac {3}{32} x^4 \log (x)-\frac {3}{16} x^4 \log ^2(x)+\frac {1}{4} x^4 \log ^3(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*Log[x]^3,x]

[Out]

(-3*x^4)/128 + (3*x^4*Log[x])/32 - (3*x^4*Log[x]^2)/16 + (x^4*Log[x]^3)/4

________________________________________________________________________________________

Mathics [A]
time = 1.74, size = 23, normalized size = 0.59 \begin {gather*} \frac {x^4 \left (-3-24 \text {Log}\left [x\right ]^2+12 \text {Log}\left [x\right ]+32 \text {Log}\left [x\right ]^3\right )}{128} \end {gather*}

Antiderivative was successfully verified.

[In]

mathics('Integrate[x^3*Log[x]^3,x]')

[Out]

x ^ 4 (-3 - 24 Log[x] ^ 2 + 12 Log[x] + 32 Log[x] ^ 3) / 128

________________________________________________________________________________________

Maple [A]
time = 0.01, size = 32, normalized size = 0.82

method result size
default \(-\frac {3 x^{4}}{128}+\frac {3 x^{4} \ln \left (x \right )}{32}-\frac {3 x^{4} \ln \left (x \right )^{2}}{16}+\frac {x^{4} \ln \left (x \right )^{3}}{4}\) \(32\)
norman \(-\frac {3 x^{4}}{128}+\frac {3 x^{4} \ln \left (x \right )}{32}-\frac {3 x^{4} \ln \left (x \right )^{2}}{16}+\frac {x^{4} \ln \left (x \right )^{3}}{4}\) \(32\)
risch \(-\frac {3 x^{4}}{128}+\frac {3 x^{4} \ln \left (x \right )}{32}-\frac {3 x^{4} \ln \left (x \right )^{2}}{16}+\frac {x^{4} \ln \left (x \right )^{3}}{4}\) \(32\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

-3/128*x^4+3/32*x^4*ln(x)-3/16*x^4*ln(x)^2+1/4*x^4*ln(x)^3

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 23, normalized size = 0.59 \begin {gather*} \frac {1}{128} \, {\left (32 \, \log \left (x\right )^{3} - 24 \, \log \left (x\right )^{2} + 12 \, \log \left (x\right ) - 3\right )} x^{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(x)^3,x, algorithm="maxima")

[Out]

1/128*(32*log(x)^3 - 24*log(x)^2 + 12*log(x) - 3)*x^4

________________________________________________________________________________________

Fricas [A]
time = 0.31, size = 31, normalized size = 0.79 \begin {gather*} \frac {1}{4} \, x^{4} \log \left (x\right )^{3} - \frac {3}{16} \, x^{4} \log \left (x\right )^{2} + \frac {3}{32} \, x^{4} \log \left (x\right ) - \frac {3}{128} \, x^{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(x)^3,x, algorithm="fricas")

[Out]

1/4*x^4*log(x)^3 - 3/16*x^4*log(x)^2 + 3/32*x^4*log(x) - 3/128*x^4

________________________________________________________________________________________

Sympy [A]
time = 0.07, size = 37, normalized size = 0.95 \begin {gather*} \frac {x^{4} \log {\left (x \right )}^{3}}{4} - \frac {3 x^{4} \log {\left (x \right )}^{2}}{16} + \frac {3 x^{4} \log {\left (x \right )}}{32} - \frac {3 x^{4}}{128} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*ln(x)**3,x)

[Out]

x**4*log(x)**3/4 - 3*x**4*log(x)**2/16 + 3*x**4*log(x)/32 - 3*x**4/128

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 40, normalized size = 1.03 \begin {gather*} \frac {1}{4} x^{4} \ln ^{3}x-\frac {3}{16} x^{4} \ln ^{2}x-\frac {3}{128} x^{4}+\frac {3}{32} x^{4} \ln x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(x)^3,x)

[Out]

1/4*x^4*log(x)^3 - 3/16*x^4*log(x)^2 + 3/32*x^4*log(x) - 3/128*x^4

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 23, normalized size = 0.59 \begin {gather*} \frac {3\,x^4\,\left (\frac {32\,{\ln \left (x\right )}^3}{3}-8\,{\ln \left (x\right )}^2+4\,\ln \left (x\right )-1\right )}{128} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*log(x)^3,x)

[Out]

(3*x^4*(4*log(x) - 8*log(x)^2 + (32*log(x)^3)/3 - 1))/128

________________________________________________________________________________________