3.1.10 \(\int \frac {\sqrt {1+x}}{x+\sqrt {1+\sqrt {1+x}}} \, dx\) [10]

Optimal. Leaf size=41 \[ 2 \sqrt {1+x}+\frac {8 \tanh ^{-1}\left (\frac {1+2 \sqrt {1+\sqrt {1+x}}}{\sqrt {5}}\right )}{\sqrt {5}} \]

[Out]

8/5*arctanh(1/5*(1+2*(1+(1+x)^(1/2))^(1/2))*5^(1/2))*5^(1/2)+2*(1+x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {814, 632, 212} \begin {gather*} 2 \sqrt {x+1}+\frac {8 \tanh ^{-1}\left (\frac {2 \sqrt {\sqrt {x+1}+1}+1}{\sqrt {5}}\right )}{\sqrt {5}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x]/(x + Sqrt[1 + Sqrt[1 + x]]),x]

[Out]

2*Sqrt[1 + x] + (8*ArcTanh[(1 + 2*Sqrt[1 + Sqrt[1 + x]])/Sqrt[5]])/Sqrt[5]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 814

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m*((f + g*x)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x}}{x+\sqrt {1+\sqrt {1+x}}} \, dx &=2 \text {Subst}\left (\int \frac {x^2}{-1+x^2+\sqrt {1+x}} \, dx,x,\sqrt {1+x}\right )\\ &=4 \text {Subst}\left (\int \frac {(-1+x) (1+x)^2}{-1+x+x^2} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=4 \text {Subst}\left (\int \left (x-\frac {1}{-1+x+x^2}\right ) \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=2 \sqrt {1+x}-4 \text {Subst}\left (\int \frac {1}{-1+x+x^2} \, dx,x,\sqrt {1+\sqrt {1+x}}\right )\\ &=2 \sqrt {1+x}+8 \text {Subst}\left (\int \frac {1}{5-x^2} \, dx,x,1+2 \sqrt {1+\sqrt {1+x}}\right )\\ &=2 \sqrt {1+x}+\frac {8 \tanh ^{-1}\left (\frac {1+2 \sqrt {1+\sqrt {1+x}}}{\sqrt {5}}\right )}{\sqrt {5}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 41, normalized size = 1.00 \begin {gather*} 2 \sqrt {1+x}+\frac {8 \tanh ^{-1}\left (\frac {1+2 \sqrt {1+\sqrt {1+x}}}{\sqrt {5}}\right )}{\sqrt {5}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x]/(x + Sqrt[1 + Sqrt[1 + x]]),x]

[Out]

2*Sqrt[1 + x] + (8*ArcTanh[(1 + 2*Sqrt[1 + Sqrt[1 + x]])/Sqrt[5]])/Sqrt[5]

________________________________________________________________________________________

Mathics [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: AttributeError} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[Sqrt[1 + x]/(x + Sqrt[1 + Sqrt[1 + x]]),x]')

[Out]

Exception raised: AttributeError >> 'NoneType' object has no attribute 'gens'

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 34, normalized size = 0.83

method result size
derivativedivides \(2 \sqrt {1+x}+2+\frac {8 \arctanh \left (\frac {\left (1+2 \sqrt {1+\sqrt {1+x}}\right ) \sqrt {5}}{5}\right ) \sqrt {5}}{5}\) \(34\)
default \(2 \sqrt {1+x}+2+\frac {8 \arctanh \left (\frac {\left (1+2 \sqrt {1+\sqrt {1+x}}\right ) \sqrt {5}}{5}\right ) \sqrt {5}}{5}\) \(34\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)/(x+(1+(1+x)^(1/2))^(1/2)),x,method=_RETURNVERBOSE)

[Out]

2*(1+x)^(1/2)+2+8/5*arctanh(1/5*(1+2*(1+(1+x)^(1/2))^(1/2))*5^(1/2))*5^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.34, size = 51, normalized size = 1.24 \begin {gather*} -\frac {4}{5} \, \sqrt {5} \log \left (-\frac {\sqrt {5} - 2 \, \sqrt {\sqrt {x + 1} + 1} - 1}{\sqrt {5} + 2 \, \sqrt {\sqrt {x + 1} + 1} + 1}\right ) + 2 \, \sqrt {x + 1} + 2 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+(1+x)^(1/2))^(1/2)),x, algorithm="maxima")

[Out]

-4/5*sqrt(5)*log(-(sqrt(5) - 2*sqrt(sqrt(x + 1) + 1) - 1)/(sqrt(5) + 2*sqrt(sqrt(x + 1) + 1) + 1)) + 2*sqrt(x
+ 1) + 2

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 101 vs. \(2 (32) = 64\).
time = 0.35, size = 101, normalized size = 2.46 \begin {gather*} \frac {4}{5} \, \sqrt {5} \log \left (\frac {2 \, x^{2} - \sqrt {5} {\left (3 \, x + 1\right )} - {\left (\sqrt {5} {\left (x + 2\right )} - 5 \, x\right )} \sqrt {x + 1} + {\left (\sqrt {5} {\left (x + 2\right )} + {\left (\sqrt {5} {\left (2 \, x - 1\right )} - 5\right )} \sqrt {x + 1} - 5 \, x\right )} \sqrt {\sqrt {x + 1} + 1} + 3 \, x + 3}{x^{2} - x - 1}\right ) + 2 \, \sqrt {x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+(1+x)^(1/2))^(1/2)),x, algorithm="fricas")

[Out]

4/5*sqrt(5)*log((2*x^2 - sqrt(5)*(3*x + 1) - (sqrt(5)*(x + 2) - 5*x)*sqrt(x + 1) + (sqrt(5)*(x + 2) + (sqrt(5)
*(2*x - 1) - 5)*sqrt(x + 1) - 5*x)*sqrt(sqrt(x + 1) + 1) + 3*x + 3)/(x^2 - x - 1)) + 2*sqrt(x + 1)

________________________________________________________________________________________

Sympy [A]
time = 8.04, size = 112, normalized size = 2.73 \begin {gather*} 2 \sqrt {x + 1} - 16 \left (\begin {cases} - \frac {\sqrt {5} \operatorname {acoth}{\left (\frac {2 \sqrt {5} \left (\sqrt {\sqrt {x + 1} + 1} + \frac {1}{2}\right )}{5} \right )}}{10} & \text {for}\: \left (\sqrt {\sqrt {x + 1} + 1} + \frac {1}{2}\right )^{2} > \frac {5}{4} \\- \frac {\sqrt {5} \operatorname {atanh}{\left (\frac {2 \sqrt {5} \left (\sqrt {\sqrt {x + 1} + 1} + \frac {1}{2}\right )}{5} \right )}}{10} & \text {for}\: \left (\sqrt {\sqrt {x + 1} + 1} + \frac {1}{2}\right )^{2} < \frac {5}{4} \end {cases}\right ) + 2 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)/(x+(1+(1+x)**(1/2))**(1/2)),x)

[Out]

2*sqrt(x + 1) - 16*Piecewise((-sqrt(5)*acoth(2*sqrt(5)*(sqrt(sqrt(x + 1) + 1) + 1/2)/5)/10, (sqrt(sqrt(x + 1)
+ 1) + 1/2)**2 > 5/4), (-sqrt(5)*atanh(2*sqrt(5)*(sqrt(sqrt(x + 1) + 1) + 1/2)/5)/10, (sqrt(sqrt(x + 1) + 1) +
 1/2)**2 < 5/4)) + 2

________________________________________________________________________________________

Giac [A]
time = 0.01, size = 71, normalized size = 1.73 \begin {gather*} 4 \left (\frac {\sqrt {x+1}+1}{2}-\frac {\ln \left (\frac {2 \sqrt {\sqrt {x+1}+1}+1-\sqrt {5}}{2 \sqrt {\sqrt {x+1}+1}+1+\sqrt {5}}\right )}{\sqrt {5}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(x+(1+(1+x)^(1/2))^(1/2)),x)

[Out]

-4/5*sqrt(5)*log(-(sqrt(5) - 2*sqrt(sqrt(x + 1) + 1) - 1)/(sqrt(5) + 2*sqrt(sqrt(x + 1) + 1) + 1)) + 2*sqrt(x
+ 1) + 2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {x+1}}{x+\sqrt {\sqrt {x+1}+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(1/2)/(x + ((x + 1)^(1/2) + 1)^(1/2)),x)

[Out]

int((x + 1)^(1/2)/(x + ((x + 1)^(1/2) + 1)^(1/2)), x)

________________________________________________________________________________________