3.3.3 \(\int \frac {\sqrt {x+\sqrt {a^2+x^2}}}{x} \, dx\) [203]

Optimal. Leaf size=82 \[ 2 \sqrt {x+\sqrt {a^2+x^2}}-2 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right )-2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right ) \]

[Out]

-2*arctan((x+(a^2+x^2)^(1/2))^(1/2)/a^(1/2))*a^(1/2)-2*arctanh((x+(a^2+x^2)^(1/2))^(1/2)/a^(1/2))*a^(1/2)+2*(x
+(a^2+x^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2144, 470, 335, 218, 212, 209} \begin {gather*} 2 \sqrt {\sqrt {a^2+x^2}+x}-2 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {\sqrt {a^2+x^2}+x}}{\sqrt {a}}\right )-2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {a^2+x^2}+x}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x + Sqrt[a^2 + x^2]]/x,x]

[Out]

2*Sqrt[x + Sqrt[a^2 + x^2]] - 2*Sqrt[a]*ArcTan[Sqrt[x + Sqrt[a^2 + x^2]]/Sqrt[a]] - 2*Sqrt[a]*ArcTanh[Sqrt[x +
 Sqrt[a^2 + x^2]]/Sqrt[a]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 2144

Int[((g_.) + (h_.)*(x_))^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_.) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Dist[1/(2^(
m + 1)*e^(m + 1)), Subst[Int[x^(n - m - 2)*(a*f^2 + x^2)*((-a)*f^2*h + 2*e*g*x + h*x^2)^m, x], x, e*x + f*Sqrt
[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, h, n}, x] && EqQ[e^2 - c*f^2, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {x+\sqrt {a^2+x^2}}}{x} \, dx &=\text {Subst}\left (\int \frac {a^2+x^2}{\sqrt {x} \left (-a^2+x^2\right )} \, dx,x,x+\sqrt {a^2+x^2}\right )\\ &=2 \sqrt {x+\sqrt {a^2+x^2}}+\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (-a^2+x^2\right )} \, dx,x,x+\sqrt {a^2+x^2}\right )\\ &=2 \sqrt {x+\sqrt {a^2+x^2}}+\left (4 a^2\right ) \text {Subst}\left (\int \frac {1}{-a^2+x^4} \, dx,x,\sqrt {x+\sqrt {a^2+x^2}}\right )\\ &=2 \sqrt {x+\sqrt {a^2+x^2}}-(2 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {x+\sqrt {a^2+x^2}}\right )-(2 a) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,\sqrt {x+\sqrt {a^2+x^2}}\right )\\ &=2 \sqrt {x+\sqrt {a^2+x^2}}-2 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right )-2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 82, normalized size = 1.00 \begin {gather*} 2 \sqrt {x+\sqrt {a^2+x^2}}-2 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right )-2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {x+\sqrt {a^2+x^2}}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x + Sqrt[a^2 + x^2]]/x,x]

[Out]

2*Sqrt[x + Sqrt[a^2 + x^2]] - 2*Sqrt[a]*ArcTan[Sqrt[x + Sqrt[a^2 + x^2]]/Sqrt[a]] - 2*Sqrt[a]*ArcTanh[Sqrt[x +
 Sqrt[a^2 + x^2]]/Sqrt[a]]

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 3.54, size = 33, normalized size = 0.40 \begin {gather*} -\frac {\sqrt {2} \sqrt {x} \text {Gamma}\left [-\frac {1}{4}\right ] \text {hyper}\left [\left \{-\frac {1}{4},-\frac {1}{4},\frac {1}{4}\right \},\left \{\frac {1}{2},\frac {3}{4}\right \},\frac {a^2 \text {exp\_polar}\left [I \text {Pi}\right ]}{x^2}\right ]}{2 \text {Gamma}\left [\frac {3}{4}\right ]} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[Sqrt[x+Sqrt[x^2+a^2]]/x,x]')

[Out]

-Sqrt[2] Sqrt[x] Gamma[-1 / 4] hyper[{-1 / 4, -1 / 4, 1 / 4}, {1 / 2, 3 / 4}, a ^ 2 exp_polar[I Pi] / x ^ 2] /
 (2 Gamma[3 / 4])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 5 vs. order 3.
time = 0.03, size = 25, normalized size = 0.30

method result size
meijerg \(2 \sqrt {2}\, \sqrt {x}\, \hypergeom \left (\left [-\frac {1}{4}, -\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {1}{2}, \frac {3}{4}\right ], -\frac {a^{2}}{x^{2}}\right )\) \(25\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x+(a^2+x^2)^(1/2))^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

2*2^(1/2)*x^(1/2)*hypergeom([-1/4,-1/4,1/4],[1/2,3/4],-a^2/x^2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(a^2+x^2)^(1/2))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(x + sqrt(a^2 + x^2))/x, x)

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 216, normalized size = 2.63 \begin {gather*} \left [-2 \, \sqrt {a} \arctan \left (\frac {\sqrt {x + \sqrt {a^{2} + x^{2}}}}{\sqrt {a}}\right ) + \sqrt {a} \log \left (\frac {a^{2} + \sqrt {a^{2} + x^{2}} a - {\left ({\left (a - x\right )} \sqrt {a} + \sqrt {a^{2} + x^{2}} \sqrt {a}\right )} \sqrt {x + \sqrt {a^{2} + x^{2}}}}{x}\right ) + 2 \, \sqrt {x + \sqrt {a^{2} + x^{2}}}, 2 \, \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {x + \sqrt {a^{2} + x^{2}}}}{a}\right ) + \sqrt {-a} \log \left (-\frac {a^{2} - \sqrt {a^{2} + x^{2}} a + {\left (\sqrt {-a} {\left (a + x\right )} - \sqrt {a^{2} + x^{2}} \sqrt {-a}\right )} \sqrt {x + \sqrt {a^{2} + x^{2}}}}{x}\right ) + 2 \, \sqrt {x + \sqrt {a^{2} + x^{2}}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(a^2+x^2)^(1/2))^(1/2)/x,x, algorithm="fricas")

[Out]

[-2*sqrt(a)*arctan(sqrt(x + sqrt(a^2 + x^2))/sqrt(a)) + sqrt(a)*log((a^2 + sqrt(a^2 + x^2)*a - ((a - x)*sqrt(a
) + sqrt(a^2 + x^2)*sqrt(a))*sqrt(x + sqrt(a^2 + x^2)))/x) + 2*sqrt(x + sqrt(a^2 + x^2)), 2*sqrt(-a)*arctan(sq
rt(-a)*sqrt(x + sqrt(a^2 + x^2))/a) + sqrt(-a)*log(-(a^2 - sqrt(a^2 + x^2)*a + (sqrt(-a)*(a + x) - sqrt(a^2 +
x^2)*sqrt(-a))*sqrt(x + sqrt(a^2 + x^2)))/x) + 2*sqrt(x + sqrt(a^2 + x^2))]

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 1.73, size = 51, normalized size = 0.62 \begin {gather*} \frac {\sqrt {x} \Gamma ^{2}\left (- \frac {1}{4}\right ) \Gamma \left (\frac {1}{4}\right ) {{}_{3}F_{2}\left (\begin {matrix} - \frac {1}{4}, - \frac {1}{4}, \frac {1}{4} \\ \frac {1}{2}, \frac {3}{4} \end {matrix}\middle | {\frac {a^{2} e^{i \pi }}{x^{2}}} \right )}}{8 \pi \Gamma \left (\frac {3}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(a**2+x**2)**(1/2))**(1/2)/x,x)

[Out]

sqrt(x)*gamma(-1/4)**2*gamma(1/4)*hyper((-1/4, -1/4, 1/4), (1/2, 3/4), a**2*exp_polar(I*pi)/x**2)/(8*pi*gamma(
3/4))

________________________________________________________________________________________

Giac [F] N/A
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x+(a^2+x^2)^(1/2))^(1/2)/x,x)

[Out]

Could not integrate

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {x+\sqrt {a^2+x^2}}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + (a^2 + x^2)^(1/2))^(1/2)/x,x)

[Out]

int((x + (a^2 + x^2)^(1/2))^(1/2)/x, x)

________________________________________________________________________________________