3.3.14 \(\int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr\) [214]

Optimal. Leaf size=68 \[ -\frac {\tan ^{-1}\left (\frac {\alpha ^2+\epsilon ^2-h r^2}{\sqrt {\alpha ^2+\epsilon ^2} \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )}{2 \sqrt {\alpha ^2+\epsilon ^2}} \]

[Out]

-1/2*arctan((-h*r^2+alpha^2+epsilon^2)/(alpha^2+epsilon^2)^(1/2)/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2))/(
alpha^2+epsilon^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {1128, 738, 210} \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\alpha ^2+\epsilon ^2-h r^2}{\sqrt {\alpha ^2+\epsilon ^2} \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )}{2 \sqrt {\alpha ^2+\epsilon ^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(r*Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4]),r]

[Out]

-1/2*ArcTan[(alpha^2 + epsilon^2 - h*r^2)/(Sqrt[alpha^2 + epsilon^2]*Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k
*r^4])]/Sqrt[alpha^2 + epsilon^2]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1128

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r-2 k r^2}} \, dr,r,r^2\right )\\ &=-\text {Subst}\left (\int \frac {1}{4 \left (-\alpha ^2-\epsilon ^2\right )-r^2} \, dr,r,\frac {2 \left (-\alpha ^2-\epsilon ^2+h r^2\right )}{\sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )\\ &=\frac {\tan ^{-1}\left (\frac {-\alpha ^2-\epsilon ^2+h r^2}{\sqrt {\alpha ^2+\epsilon ^2} \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )}{2 \sqrt {\alpha ^2+\epsilon ^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 72, normalized size = 1.06 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\sqrt {2} \sqrt {-k} r^2-\sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}{\sqrt {\alpha ^2+\epsilon ^2}}\right )}{\sqrt {\alpha ^2+\epsilon ^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(r*Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4]),r]

[Out]

-(ArcTan[(Sqrt[2]*Sqrt[-k]*r^2 - Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4])/Sqrt[alpha^2 + epsilon^2]]/Sq
rt[alpha^2 + epsilon^2])

________________________________________________________________________________________

Mathics [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {cought exception: maximum recursion depth exceeded} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[1/(r*Sqrt[2*h*r^2-alpha^2-epsilon^2-2*k*r^4]),r]')

[Out]

cought exception: maximum recursion depth exceeded

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 78, normalized size = 1.15

method result size
default \(-\frac {\ln \left (\frac {-2 \alpha ^{2}-2 \epsilon ^{2}+2 h \,r^{2}+2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}\, \sqrt {-2 k \,r^{4}+2 h \,r^{2}-\alpha ^{2}-\epsilon ^{2}}}{r^{2}}\right )}{2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}}\) \(78\)
elliptic \(-\frac {\ln \left (\frac {-2 \alpha ^{2}-2 \epsilon ^{2}+2 h \,r^{2}+2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}\, \sqrt {-2 k \,r^{4}+2 h \,r^{2}-\alpha ^{2}-\epsilon ^{2}}}{r^{2}}\right )}{2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}}\) \(78\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r,method=_RETURNVERBOSE)

[Out]

-1/2/(-alpha^2-epsilon^2)^(1/2)*ln((-2*alpha^2-2*epsilon^2+2*h*r^2+2*(-alpha^2-epsilon^2)^(1/2)*(-2*k*r^4+2*h*
r^2-alpha^2-epsilon^2)^(1/2))/r^2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(2*epsilon^2*k+2*alpha^2*k>0)',
 see `assume

________________________________________________________________________________________

Fricas [A]
time = 0.32, size = 106, normalized size = 1.56 \begin {gather*} -\frac {\arctan \left (\frac {\sqrt {-2 \, k r^{4} + 2 \, h r^{2} - \alpha ^{2} - \epsilon ^{2}} {\left (h r^{2} - \alpha ^{2} - \epsilon ^{2}\right )} \sqrt {\alpha ^{2} + \epsilon ^{2}}}{2 \, {\left (\alpha ^{2} + \epsilon ^{2}\right )} k r^{4} + \alpha ^{4} + 2 \, \alpha ^{2} \epsilon ^{2} + \epsilon ^{4} - 2 \, {\left (\alpha ^{2} + \epsilon ^{2}\right )} h r^{2}}\right )}{2 \, \sqrt {\alpha ^{2} + \epsilon ^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r, algorithm="fricas")

[Out]

-1/2*arctan(sqrt(-2*k*r^4 + 2*h*r^2 - alpha^2 - epsilon^2)*(h*r^2 - alpha^2 - epsilon^2)*sqrt(alpha^2 + epsilo
n^2)/(2*(alpha^2 + epsilon^2)*k*r^4 + alpha^4 + 2*alpha^2*epsilon^2 + epsilon^4 - 2*(alpha^2 + epsilon^2)*h*r^
2))/sqrt(alpha^2 + epsilon^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{r \sqrt {- \alpha ^{2} - \epsilon ^{2} + 2 h r^{2} - 2 k r^{4}}}\, dr \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/r/(-2*k*r**4+2*h*r**2-alpha**2-epsilon**2)**(1/2),r)

[Out]

Integral(1/(r*sqrt(-alpha**2 - epsilon**2 + 2*h*r**2 - 2*k*r**4)), r)

________________________________________________________________________________________

Giac [A]
time = 0.01, size = 43, normalized size = 0.63 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {-\alpha ^{2}+2 h r^{2}-2 k r^{4}}-\sqrt {-2 k} r^{2}}{\alpha }\right )}{\alpha } \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r)

[Out]

arctan(-(sqrt(2)*sqrt(-k)*r^2 - sqrt(-2*k*r^4 + 2*h*r^2 - alpha^2))/alpha)/alpha

________________________________________________________________________________________

Mupad [B]
time = 0.44, size = 72, normalized size = 1.06 \begin {gather*} -\frac {\ln \left (h-\frac {\alpha ^2+\epsilon ^2}{r^2}+\frac {\sqrt {-\alpha ^2-\epsilon ^2}\,\sqrt {-\alpha ^2-\epsilon ^2-2\,k\,r^4+2\,h\,r^2}}{r^2}\right )}{2\,\sqrt {-\alpha ^2-\epsilon ^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(r*(2*h*r^2 - 2*k*r^4 - alpha^2 - epsilon^2)^(1/2)),r)

[Out]

-log(h - (alpha^2 + epsilon^2)/r^2 + ((- alpha^2 - epsilon^2)^(1/2)*(2*h*r^2 - 2*k*r^4 - alpha^2 - epsilon^2)^
(1/2))/r^2)/(2*(- alpha^2 - epsilon^2)^(1/2))

________________________________________________________________________________________