3.1.40 \(\int \frac {\sqrt {A^2+B^2-B^2 y^2}}{1-y^2} \, dy\) [40]

Optimal. Leaf size=51 \[ B \tan ^{-1}\left (\frac {B y}{\sqrt {A^2+B^2-B^2 y^2}}\right )+A \tanh ^{-1}\left (\frac {A y}{\sqrt {A^2+B^2-B^2 y^2}}\right ) \]

[Out]

B*arctan(B*y/(-B^2*y^2+A^2+B^2)^(1/2))+A*arctanh(A*y/(-B^2*y^2+A^2+B^2)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {399, 223, 209, 385, 212} \begin {gather*} B \tan ^{-1}\left (\frac {B y}{\sqrt {A^2-B^2 y^2+B^2}}\right )+A \tanh ^{-1}\left (\frac {A y}{\sqrt {A^2-B^2 y^2+B^2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[A^2 + B^2 - B^2*y^2]/(1 - y^2),y]

[Out]

B*ArcTan[(B*y)/Sqrt[A^2 + B^2 - B^2*y^2]] + A*ArcTanh[(A*y)/Sqrt[A^2 + B^2 - B^2*y^2]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 399

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[b/d, Int[(a + b*x^n)^(p - 1), x]
, x] - Dist[(b*c - a*d)/d, Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c
 - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\sqrt {A^2+B^2-B^2 y^2}}{1-y^2} \, dy &=A^2 \int \frac {1}{\left (1-y^2\right ) \sqrt {A^2+B^2-B^2 y^2}} \, dy+B^2 \int \frac {1}{\sqrt {A^2+B^2-B^2 y^2}} \, dy\\ &=A^2 \text {Subst}\left (\int \frac {1}{1-A^2 y^2} \, dy,y,\frac {y}{\sqrt {A^2+B^2-B^2 y^2}}\right )+B^2 \text {Subst}\left (\int \frac {1}{1+B^2 y^2} \, dy,y,\frac {y}{\sqrt {A^2+B^2-B^2 y^2}}\right )\\ &=B \tan ^{-1}\left (\frac {B y}{\sqrt {A^2+B^2-B^2 y^2}}\right )+A \tanh ^{-1}\left (\frac {A y}{\sqrt {A^2+B^2-B^2 y^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 100, normalized size = 1.96 \begin {gather*} \frac {\sqrt {-B^2} \left (-A \tan ^{-1}\left (\frac {B^2 \left (-1+y^2\right )+\sqrt {-B^2} y \sqrt {A^2+B^2-B^2 y^2}}{A B}\right )+B \log \left (-\sqrt {-B^2} y+\sqrt {A^2+B^2-B^2 y^2}\right )\right )}{B} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[A^2 + B^2 - B^2*y^2]/(1 - y^2),y]

[Out]

(Sqrt[-B^2]*(-(A*ArcTan[(B^2*(-1 + y^2) + Sqrt[-B^2]*y*Sqrt[A^2 + B^2 - B^2*y^2])/(A*B)]) + B*Log[-(Sqrt[-B^2]
*y) + Sqrt[A^2 + B^2 - B^2*y^2]]))/B

________________________________________________________________________________________

Mathics [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {cought exception: maximum recursion depth exceeded while calling a Python object} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[Sqrt[A^2 + B^2 - B^2*y^2]/(1 - y^2),y]')

[Out]

cought exception: maximum recursion depth exceeded while calling a Python object

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(261\) vs. \(2(47)=94\).
time = 0.08, size = 262, normalized size = 5.14

method result size
default \(-\frac {\sqrt {-B^{2} \left (y -1\right )^{2}-2 B^{2} \left (y -1\right )+A^{2}}}{2}+\frac {B^{2} \arctan \left (\frac {\sqrt {B^{2}}\, y}{\sqrt {-B^{2} \left (y -1\right )^{2}-2 B^{2} \left (y -1\right )+A^{2}}}\right )}{2 \sqrt {B^{2}}}+\frac {A^{2} \ln \left (\frac {2 A^{2}-2 B^{2} \left (y -1\right )+2 \sqrt {A^{2}}\, \sqrt {-B^{2} \left (y -1\right )^{2}-2 B^{2} \left (y -1\right )+A^{2}}}{y -1}\right )}{2 \sqrt {A^{2}}}+\frac {\sqrt {-B^{2} \left (1+y \right )^{2}+2 B^{2} \left (1+y \right )+A^{2}}}{2}+\frac {B^{2} \arctan \left (\frac {\sqrt {B^{2}}\, y}{\sqrt {-B^{2} \left (1+y \right )^{2}+2 B^{2} \left (1+y \right )+A^{2}}}\right )}{2 \sqrt {B^{2}}}-\frac {A^{2} \ln \left (\frac {2 A^{2}+2 B^{2} \left (1+y \right )+2 \sqrt {A^{2}}\, \sqrt {-B^{2} \left (1+y \right )^{2}+2 B^{2} \left (1+y \right )+A^{2}}}{1+y}\right )}{2 \sqrt {A^{2}}}\) \(262\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-B^2*y^2+A^2+B^2)^(1/2)/(-y^2+1),y,method=_RETURNVERBOSE)

[Out]

-1/2*(-B^2*(y-1)^2-2*B^2*(y-1)+A^2)^(1/2)+1/2*B^2/(B^2)^(1/2)*arctan((B^2)^(1/2)*y/(-B^2*(y-1)^2-2*B^2*(y-1)+A
^2)^(1/2))+1/2*A^2/(A^2)^(1/2)*ln((2*A^2-2*B^2*(y-1)+2*(A^2)^(1/2)*(-B^2*(y-1)^2-2*B^2*(y-1)+A^2)^(1/2))/(y-1)
)+1/2*(-B^2*(1+y)^2+2*B^2*(1+y)+A^2)^(1/2)+1/2*B^2/(B^2)^(1/2)*arctan((B^2)^(1/2)*y/(-B^2*(1+y)^2+2*B^2*(1+y)+
A^2)^(1/2))-1/2*A^2/(A^2)^(1/2)*ln((2*A^2+2*B^2*(1+y)+2*(A^2)^(1/2)*(-B^2*(1+y)^2+2*B^2*(1+y)+A^2)^(1/2))/(1+y
))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 122 vs. \(2 (47) = 94\).
time = 0.37, size = 122, normalized size = 2.39 \begin {gather*} B \arcsin \left (\frac {B^{2} y}{\sqrt {A^{2} B^{2} + B^{4}}}\right ) - \frac {1}{2} \, A \log \left (B^{2} + \frac {2 \, A^{2}}{{\left | 2 \, y + 2 \right |}} + \frac {2 \, \sqrt {-B^{2} y^{2} + A^{2} + B^{2}} A}{{\left | 2 \, y + 2 \right |}}\right ) + \frac {1}{2} \, A \log \left (-B^{2} + \frac {2 \, A^{2}}{{\left | 2 \, y - 2 \right |}} + \frac {2 \, \sqrt {-B^{2} y^{2} + A^{2} + B^{2}} A}{{\left | 2 \, y - 2 \right |}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-B^2*y^2+A^2+B^2)^(1/2)/(-y^2+1),y, algorithm="maxima")

[Out]

B*arcsin(B^2*y/sqrt(A^2*B^2 + B^4)) - 1/2*A*log(B^2 + 2*A^2/abs(2*y + 2) + 2*sqrt(-B^2*y^2 + A^2 + B^2)*A/abs(
2*y + 2)) + 1/2*A*log(-B^2 + 2*A^2/abs(2*y - 2) + 2*sqrt(-B^2*y^2 + A^2 + B^2)*A/abs(2*y - 2))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (47) = 94\).
time = 0.32, size = 129, normalized size = 2.53 \begin {gather*} -B \arctan \left (\frac {\sqrt {-B^{2} y^{2} + A^{2} + B^{2}}}{B y}\right ) + \frac {1}{4} \, A \log \left (-\frac {{\left (A^{2} - B^{2}\right )} y^{2} + 2 \, \sqrt {-B^{2} y^{2} + A^{2} + B^{2}} A y + A^{2} + B^{2}}{y^{2}}\right ) - \frac {1}{4} \, A \log \left (-\frac {{\left (A^{2} - B^{2}\right )} y^{2} - 2 \, \sqrt {-B^{2} y^{2} + A^{2} + B^{2}} A y + A^{2} + B^{2}}{y^{2}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-B^2*y^2+A^2+B^2)^(1/2)/(-y^2+1),y, algorithm="fricas")

[Out]

-B*arctan(sqrt(-B^2*y^2 + A^2 + B^2)/(B*y)) + 1/4*A*log(-((A^2 - B^2)*y^2 + 2*sqrt(-B^2*y^2 + A^2 + B^2)*A*y +
 A^2 + B^2)/y^2) - 1/4*A*log(-((A^2 - B^2)*y^2 - 2*sqrt(-B^2*y^2 + A^2 + B^2)*A*y + A^2 + B^2)/y^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\sqrt {A^{2} - B^{2} y^{2} + B^{2}}}{y^{2} - 1}\, dy \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-B**2*y**2+A**2+B**2)**(1/2)/(-y**2+1),y)

[Out]

-Integral(sqrt(A**2 - B**2*y**2 + B**2)/(y**2 - 1), y)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 295 vs. \(2 (47) = 94\).
time = 0.02, size = 356, normalized size = 6.98 \begin {gather*} -\frac {B^{2} \left (\frac {1}{2} \pi \mathrm {sign}\left (y\right )-\arctan \left (\frac {B^{2} y \left (\left (-\frac {-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}{2 \left (B^{2} y\right )}\right )^{2}-1\right )}{-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}\right )\right )}{\left |B\right |}+\frac {A B^{2} \ln \left |B \left (-\frac {-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}{2 \left (B^{2} y\right )}+\frac {2 B^{2} y}{-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}\right )+2 A\right |}{2 \left (B \left |B\right |\right )}-\frac {A B^{2} \ln \left |B \left (-\frac {-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}{2 \left (B^{2} y\right )}+\frac {2 B^{2} y}{-2 B \sqrt {A^{2}+B^{2}}-2 \sqrt {-B^{2} y^{2}+A^{2}+B^{2}} \left |B\right |}\right )-2 A\right |}{2 \left (B \left |B\right |\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-B^2*y^2+A^2+B^2)^(1/2)/(-y^2+1),y)

[Out]

-1/2*(pi*sgn(y) - 2*arctan(-1/2*B^2*y*((sqrt(A^2 + B^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B))^2/(B^4*y^2) - 1
)/(sqrt(A^2 + B^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B))))*B^2/abs(B) + 1/2*A*B*log(abs(-(B^2*y/(sqrt(A^2 + B
^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B)) - (sqrt(A^2 + B^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B))/(B^2*y))*
B + 2*A))/abs(B) - 1/2*A*B*log(abs(-(B^2*y/(sqrt(A^2 + B^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B)) - (sqrt(A^2
 + B^2)*B + sqrt(-B^2*y^2 + A^2 + B^2)*abs(B))/(B^2*y))*B - 2*A))/abs(B)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \left \{\begin {array}{cl} -\int \frac {\sqrt {-B^2\,y^2}}{y^2-1} \,d y & \text {\ if\ \ }A^2+B^2=0\\ -\ln \left (2\,y\,\sqrt {-B^2}+2\,\sqrt {A^2-B^2\,y^2+B^2}\right )\,\sqrt {-B^2}-\mathrm {atan}\left (\frac {y\,\sqrt {A^2}\,1{}\mathrm {i}}{\sqrt {A^2-B^2\,y^2+B^2}}\right )\,\sqrt {A^2}\,1{}\mathrm {i} & \text {\ if\ \ }A^2+B^2\neq 0 \end {array}\right . \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(A^2 + B^2 - B^2*y^2)^(1/2)/(y^2 - 1),y)

[Out]

piecewise(A^2 + B^2 == 0, -int((-B^2*y^2)^(1/2)/(y^2 - 1), y), A^2 + B^2 ~= 0, - atan((y*(A^2)^(1/2)*1i)/(A^2
+ B^2 - B^2*y^2)^(1/2))*(A^2)^(1/2)*1i - log(2*y*(-B^2)^(1/2) + 2*(A^2 + B^2 - B^2*y^2)^(1/2))*(-B^2)^(1/2))

________________________________________________________________________________________