3.1.37 \(\int \sqrt {t} \log (t) \, dt\) [37]

Optimal. Leaf size=21 \[ -\frac {4 t^{3/2}}{9}+\frac {2}{3} t^{3/2} \log (t) \]

[Out]

-4/9*t^(3/2)+2/3*t^(3/2)*ln(t)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2341} \begin {gather*} \frac {2}{3} t^{3/2} \log (t)-\frac {4 t^{3/2}}{9} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[t]*Log[t],t]

[Out]

(-4*t^(3/2))/9 + (2*t^(3/2)*Log[t])/3

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

\begin {align*} \int \sqrt {t} \log (t) \, dt &=-\frac {4 t^{3/2}}{9}+\frac {2}{3} t^{3/2} \log (t)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 15, normalized size = 0.71 \begin {gather*} \frac {2}{9} t^{3/2} (-2+3 \log (t)) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[t]*Log[t],t]

[Out]

(2*t^(3/2)*(-2 + 3*Log[t]))/9

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 2.95, size = 98, normalized size = 4.67 \begin {gather*} \text {Piecewise}\left [\left \{\left \{\frac {2 t^{\frac {3}{2}} \left (-4-3 \text {Log}\left [\frac {1}{t}\right ]+3 \text {Log}\left [t\right ]\right )}{9},\text {Abs}\left [t\right ]<1\text {\&\&}\frac {1}{\text {Abs}\left [t\right ]}<1\right \},\left \{\frac {2 t^{\frac {3}{2}} \left (-2+3 \text {Log}\left [t\right ]\right )}{9},\text {Abs}\left [t\right ]<1\right \},\left \{\frac {2 t^{\frac {3}{2}} \left (-2-3 \text {Log}\left [\frac {1}{t}\right ]\right )}{9},\frac {1}{\text {Abs}\left [t\right ]}<1\right \}\right \},-\text {meijerg}\left [\left \{\left \{1\right \},\left \{\frac {5}{2},\frac {5}{2}\right \}\right \},\left \{\left \{\frac {3}{2},\frac {3}{2}\right \},\left \{0\right \}\right \},t\right ]+\text {meijerg}\left [\left \{\left \{\frac {5}{2},\frac {5}{2},1\right \},\left \{\right \}\right \},\left \{\left \{\right \},\left \{\frac {3}{2},\frac {3}{2},0\right \}\right \},t\right ]\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[Sqrt[t]*Log[t],t]')

[Out]

Piecewise[{{2 t ^ (3 / 2) (-4 - 3 Log[1 / t] + 3 Log[t]) / 9, Abs[t] < 1 && 1 / Abs[t] < 1}, {2 t ^ (3 / 2) (-
2 + 3 Log[t]) / 9, Abs[t] < 1}, {2 t ^ (3 / 2) (-2 - 3 Log[1 / t]) / 9, 1 / Abs[t] < 1}}, -meijerg[{{1}, {5 /
2, 5 / 2}}, {{3 / 2, 3 / 2}, {0}}, t] + meijerg[{{5 / 2, 5 / 2, 1}, {}}, {{}, {3 / 2, 3 / 2, 0}}, t]]

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 14, normalized size = 0.67

method result size
derivativedivides \(-\frac {4 t^{\frac {3}{2}}}{9}+\frac {2 t^{\frac {3}{2}} \ln \left (t \right )}{3}\) \(14\)
default \(-\frac {4 t^{\frac {3}{2}}}{9}+\frac {2 t^{\frac {3}{2}} \ln \left (t \right )}{3}\) \(14\)
risch \(-\frac {4 t^{\frac {3}{2}}}{9}+\frac {2 t^{\frac {3}{2}} \ln \left (t \right )}{3}\) \(14\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(t)*t^(1/2),t,method=_RETURNVERBOSE)

[Out]

-4/9*t^(3/2)+2/3*t^(3/2)*ln(t)

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 13, normalized size = 0.62 \begin {gather*} \frac {2}{3} \, t^{\frac {3}{2}} \log \left (t\right ) - \frac {4}{9} \, t^{\frac {3}{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(t)*t^(1/2),t, algorithm="maxima")

[Out]

2/3*t^(3/2)*log(t) - 4/9*t^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 14, normalized size = 0.67 \begin {gather*} \frac {2}{9} \, {\left (3 \, t \log \left (t\right ) - 2 \, t\right )} \sqrt {t} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(t)*t^(1/2),t, algorithm="fricas")

[Out]

2/9*(3*t*log(t) - 2*t)*sqrt(t)

________________________________________________________________________________________

Sympy [A]
time = 0.88, size = 105, normalized size = 5.00 \begin {gather*} \begin {cases} - \frac {2 t^{\frac {3}{2}} \log {\left (\frac {1}{t} \right )}}{3} + \frac {2 t^{\frac {3}{2}} \log {\left (t \right )}}{3} - \frac {8 t^{\frac {3}{2}}}{9} & \text {for}\: \frac {1}{\left |{t}\right |} < 1 \wedge \left |{t}\right | < 1 \\\frac {2 t^{\frac {3}{2}} \log {\left (t \right )}}{3} - \frac {4 t^{\frac {3}{2}}}{9} & \text {for}\: \left |{t}\right | < 1 \\- \frac {2 t^{\frac {3}{2}} \log {\left (\frac {1}{t} \right )}}{3} - \frac {4 t^{\frac {3}{2}}}{9} & \text {for}\: \frac {1}{\left |{t}\right |} < 1 \\- {G_{3, 3}^{2, 1}\left (\begin {matrix} 1 & \frac {5}{2}, \frac {5}{2} \\\frac {3}{2}, \frac {3}{2} & 0 \end {matrix} \middle | {t} \right )} + {G_{3, 3}^{0, 3}\left (\begin {matrix} \frac {5}{2}, \frac {5}{2}, 1 & \\ & \frac {3}{2}, \frac {3}{2}, 0 \end {matrix} \middle | {t} \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(t)*t**(1/2),t)

[Out]

Piecewise((-2*t**(3/2)*log(1/t)/3 + 2*t**(3/2)*log(t)/3 - 8*t**(3/2)/9, (Abs(t) < 1) & (1/Abs(t) < 1)), (2*t**
(3/2)*log(t)/3 - 4*t**(3/2)/9, Abs(t) < 1), (-2*t**(3/2)*log(1/t)/3 - 4*t**(3/2)/9, 1/Abs(t) < 1), (-meijerg((
(1,), (5/2, 5/2)), ((3/2, 3/2), (0,)), t) + meijerg(((5/2, 5/2, 1), ()), ((), (3/2, 3/2, 0)), t), True))

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 27, normalized size = 1.29 \begin {gather*} \frac {2}{3} \sqrt {t} t \ln t-\frac {2\cdot 2 \sqrt {t} t}{3\cdot 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(t)*t^(1/2),t)

[Out]

2/3*t^(3/2)*log(t) - 4/9*t^(3/2)

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 9, normalized size = 0.43 \begin {gather*} \frac {2\,t^{3/2}\,\left (\ln \left (t\right )-\frac {2}{3}\right )}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(t^(1/2)*log(t),t)

[Out]

(2*t^(3/2)*(log(t) - 2/3))/3

________________________________________________________________________________________