\(\int \frac {1+x^2}{(1-x^2) \sqrt {1+x^2+x^4}} \, dx\) [324]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 26 \[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {3} x}{\sqrt {1+x^2+x^4}}\right )}{\sqrt {3}} \]

[Out]

1/3*arctanh(x*3^(1/2)/(x^4+x^2+1)^(1/2))*3^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1712, 212} \[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {3} x}{\sqrt {x^4+x^2+1}}\right )}{\sqrt {3}} \]

[In]

Int[(1 + x^2)/((1 - x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

ArcTanh[(Sqrt[3]*x)/Sqrt[1 + x^2 + x^4]]/Sqrt[3]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1712

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[
A, Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1}{1-3 x^2} \, dx,x,\frac {x}{\sqrt {1+x^2+x^4}}\right ) \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {3} x}{\sqrt {1+x^2+x^4}}\right )}{\sqrt {3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00 \[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {3} x}{\sqrt {1+x^2+x^4}}\right )}{\sqrt {3}} \]

[In]

Integrate[(1 + x^2)/((1 - x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

ArcTanh[(Sqrt[3]*x)/Sqrt[1 + x^2 + x^4]]/Sqrt[3]

Maple [A] (verified)

Time = 1.21 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.19

method result size
elliptic \(\frac {\operatorname {arctanh}\left (\frac {\sqrt {x^{4}+x^{2}+1}\, \sqrt {2}\, \sqrt {6}}{6 x}\right ) \sqrt {6}\, \sqrt {2}}{6}\) \(31\)
trager \(-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x +\sqrt {x^{4}+x^{2}+1}}{\left (-1+x \right ) \left (1+x \right )}\right )}{3}\) \(42\)
default \(\frac {\sqrt {3}\, \left (\operatorname {arctanh}\left (\frac {\left (2 x^{2}-x +2\right ) \sqrt {3}}{3 \sqrt {x^{4}+x^{2}+1}}\right )-\operatorname {arctanh}\left (\frac {\left (2 x^{2}+x +2\right ) \sqrt {3}}{3 \sqrt {x^{4}+x^{2}+1}}\right )\right )}{6}\) \(59\)
pseudoelliptic \(\frac {\sqrt {3}\, \left (\operatorname {arctanh}\left (\frac {\left (2 x^{2}-x +2\right ) \sqrt {3}}{3 \sqrt {x^{4}+x^{2}+1}}\right )-\operatorname {arctanh}\left (\frac {\left (2 x^{2}+x +2\right ) \sqrt {3}}{3 \sqrt {x^{4}+x^{2}+1}}\right )\right )}{6}\) \(59\)

[In]

int((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6*arctanh(1/6*(x^4+x^2+1)^(1/2)*2^(1/2)/x*6^(1/2))*6^(1/2)*2^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 45 vs. \(2 (21) = 42\).

Time = 0.27 (sec) , antiderivative size = 45, normalized size of antiderivative = 1.73 \[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\frac {1}{6} \, \sqrt {3} \log \left (\frac {x^{4} + 2 \, \sqrt {3} \sqrt {x^{4} + x^{2} + 1} x + 4 \, x^{2} + 1}{x^{4} - 2 \, x^{2} + 1}\right ) \]

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*log((x^4 + 2*sqrt(3)*sqrt(x^4 + x^2 + 1)*x + 4*x^2 + 1)/(x^4 - 2*x^2 + 1))

Sympy [F]

\[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=- \int \frac {x^{2}}{x^{2} \sqrt {x^{4} + x^{2} + 1} - \sqrt {x^{4} + x^{2} + 1}}\, dx - \int \frac {1}{x^{2} \sqrt {x^{4} + x^{2} + 1} - \sqrt {x^{4} + x^{2} + 1}}\, dx \]

[In]

integrate((x**2+1)/(-x**2+1)/(x**4+x**2+1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(x**4 + x**2 + 1) - sqrt(x**4 + x**2 + 1)), x) - Integral(1/(x**2*sqrt(x**4 + x**2 +
1) - sqrt(x**4 + x**2 + 1)), x)

Maxima [F]

\[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\int { -\frac {x^{2} + 1}{\sqrt {x^{4} + x^{2} + 1} {\left (x^{2} - 1\right )}} \,d x } \]

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^2 + 1)/(sqrt(x^4 + x^2 + 1)*(x^2 - 1)), x)

Giac [F]

\[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\int { -\frac {x^{2} + 1}{\sqrt {x^{4} + x^{2} + 1} {\left (x^{2} - 1\right )}} \,d x } \]

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 + 1)/(sqrt(x^4 + x^2 + 1)*(x^2 - 1)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1+x^2}{\left (1-x^2\right ) \sqrt {1+x^2+x^4}} \, dx=\int -\frac {x^2+1}{\left (x^2-1\right )\,\sqrt {x^4+x^2+1}} \,d x \]

[In]

int(-(x^2 + 1)/((x^2 - 1)*(x^2 + x^4 + 1)^(1/2)),x)

[Out]

int(-(x^2 + 1)/((x^2 - 1)*(x^2 + x^4 + 1)^(1/2)), x)