\(\int \cos ^4(\frac {\pi }{4}+\frac {x}{2}) \, dx\) [335]

   Optimal result
   Rubi [B] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 20 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3 x}{8}+\frac {\cos (x)}{2}-\frac {1}{8} \cos (x) \sin (x) \]

[Out]

3/8*x+1/2*cos(x)-1/8*cos(x)*sin(x)

Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(64\) vs. \(2(20)=40\).

Time = 0.02 (sec) , antiderivative size = 64, normalized size of antiderivative = 3.20, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2715, 8} \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3 x}{8}+\frac {1}{2} \sin \left (\frac {x}{2}+\frac {\pi }{4}\right ) \cos ^3\left (\frac {x}{2}+\frac {\pi }{4}\right )+\frac {3}{4} \sin \left (\frac {x}{2}+\frac {\pi }{4}\right ) \cos \left (\frac {x}{2}+\frac {\pi }{4}\right ) \]

[In]

Int[Cos[Pi/4 + x/2]^4,x]

[Out]

(3*x)/8 + (3*Cos[Pi/4 + x/2]*Sin[Pi/4 + x/2])/4 + (Cos[Pi/4 + x/2]^3*Sin[Pi/4 + x/2])/2

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \cos ^3\left (\frac {\pi }{4}+\frac {x}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {3}{4} \int \sin ^2\left (\frac {\pi }{4}-\frac {x}{2}\right ) \, dx \\ & = \frac {3}{4} \cos \left (\frac {\pi }{4}+\frac {x}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {1}{2} \cos ^3\left (\frac {\pi }{4}+\frac {x}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {3 \int 1 \, dx}{8} \\ & = \frac {3 x}{8}+\frac {3}{4} \cos \left (\frac {\pi }{4}+\frac {x}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {1}{2} \cos ^3\left (\frac {\pi }{4}+\frac {x}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.05 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {1}{16} (3 \pi +6 x+8 \cos (x)-2 \cos (x) \sin (x)) \]

[In]

Integrate[Cos[Pi/4 + x/2]^4,x]

[Out]

(3*Pi + 6*x + 8*Cos[x] - 2*Cos[x]*Sin[x])/16

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.75

method result size
risch \(\frac {3 x}{8}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (2 x \right )}{16}\) \(15\)
parallelrisch \(\frac {3 x}{8}+\frac {\cos \left (x \right )}{2}-\frac {\sin \left (2 x \right )}{16}\) \(15\)
derivativedivides \(\frac {\left (\cos ^{3}\left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {3 \cos \left (\frac {\pi }{4}+\frac {x}{2}\right )}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {3 \pi }{16}+\frac {3 x}{8}\) \(39\)
default \(\frac {\left (\cos ^{3}\left (\frac {\pi }{4}+\frac {x}{2}\right )+\frac {3 \cos \left (\frac {\pi }{4}+\frac {x}{2}\right )}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {3 \pi }{16}+\frac {3 x}{8}\) \(39\)
norman \(\frac {\frac {3 x}{8}-\frac {3 \left (\tan ^{3}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{2}+\frac {3 \left (\tan ^{5}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{2}-\frac {5 \left (\tan ^{7}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{2}+\frac {3 x \left (\tan ^{2}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{2}+\frac {9 x \left (\tan ^{4}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{4}+\frac {3 x \left (\tan ^{6}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{2}+\frac {3 x \left (\tan ^{8}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )}{8}+\frac {5 \tan \left (\frac {\pi }{8}+\frac {x}{4}\right )}{2}}{\left (1+\tan ^{2}\left (\frac {\pi }{8}+\frac {x}{4}\right )\right )^{4}}\) \(118\)

[In]

int(cos(1/4*Pi+1/2*x)^4,x,method=_RETURNVERBOSE)

[Out]

3/8*x+1/2*cos(x)-1/16*sin(2*x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (14) = 28\).

Time = 0.26 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.85 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {1}{4} \, {\left (2 \, \cos \left (\frac {1}{4} \, \pi + \frac {1}{2} \, x\right )^{3} + 3 \, \cos \left (\frac {1}{4} \, \pi + \frac {1}{2} \, x\right )\right )} \sin \left (\frac {1}{4} \, \pi + \frac {1}{2} \, x\right ) + \frac {3}{8} \, x \]

[In]

integrate(cos(1/4*pi+1/2*x)^4,x, algorithm="fricas")

[Out]

1/4*(2*cos(1/4*pi + 1/2*x)^3 + 3*cos(1/4*pi + 1/2*x))*sin(1/4*pi + 1/2*x) + 3/8*x

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 99 vs. \(2 (17) = 34\).

Time = 0.13 (sec) , antiderivative size = 99, normalized size of antiderivative = 4.95 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3 x \sin ^{4}{\left (\frac {x}{2} + \frac {\pi }{4} \right )}}{8} + \frac {3 x \sin ^{2}{\left (\frac {x}{2} + \frac {\pi }{4} \right )} \cos ^{2}{\left (\frac {x}{2} + \frac {\pi }{4} \right )}}{4} + \frac {3 x \cos ^{4}{\left (\frac {x}{2} + \frac {\pi }{4} \right )}}{8} + \frac {3 \sin ^{3}{\left (\frac {x}{2} + \frac {\pi }{4} \right )} \cos {\left (\frac {x}{2} + \frac {\pi }{4} \right )}}{4} + \frac {5 \sin {\left (\frac {x}{2} + \frac {\pi }{4} \right )} \cos ^{3}{\left (\frac {x}{2} + \frac {\pi }{4} \right )}}{4} \]

[In]

integrate(cos(1/4*pi+1/2*x)**4,x)

[Out]

3*x*sin(x/2 + pi/4)**4/8 + 3*x*sin(x/2 + pi/4)**2*cos(x/2 + pi/4)**2/4 + 3*x*cos(x/2 + pi/4)**4/8 + 3*sin(x/2
+ pi/4)**3*cos(x/2 + pi/4)/4 + 5*sin(x/2 + pi/4)*cos(x/2 + pi/4)**3/4

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.15 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3}{16} \, \pi + \frac {3}{8} \, x + \frac {1}{16} \, \sin \left (\pi + 2 \, x\right ) + \frac {1}{2} \, \sin \left (\frac {1}{2} \, \pi + x\right ) \]

[In]

integrate(cos(1/4*pi+1/2*x)^4,x, algorithm="maxima")

[Out]

3/16*pi + 3/8*x + 1/16*sin(pi + 2*x) + 1/2*sin(1/2*pi + x)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.70 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3}{8} \, x + \frac {1}{2} \, \cos \left (x\right ) - \frac {1}{16} \, \sin \left (2 \, x\right ) \]

[In]

integrate(cos(1/4*pi+1/2*x)^4,x, algorithm="giac")

[Out]

3/8*x + 1/2*cos(x) - 1/16*sin(2*x)

Mupad [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 20, normalized size of antiderivative = 1.00 \[ \int \cos ^4\left (\frac {\pi }{4}+\frac {x}{2}\right ) \, dx=\frac {3\,x}{8}+\frac {\sin \left (\Pi +2\,x\right )}{16}+\frac {\sin \left (\frac {\Pi }{2}+x\right )}{2} \]

[In]

int(cos(Pi/4 + x/2)^4,x)

[Out]

(3*x)/8 + sin(Pi + 2*x)/16 + sin(Pi/2 + x)/2