\(\int \csc (4 x) \sin (x) \, dx\) [388]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 7, antiderivative size = 26 \[ \int \csc (4 x) \sin (x) \, dx=-\frac {1}{4} \text {arctanh}(\sin (x))+\frac {\text {arctanh}\left (\sqrt {2} \sin (x)\right )}{2 \sqrt {2}} \]

[Out]

-1/4*arctanh(sin(x))+1/4*arctanh(sin(x)*2^(1/2))*2^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1107, 213} \[ \int \csc (4 x) \sin (x) \, dx=\frac {\text {arctanh}\left (\sqrt {2} \sin (x)\right )}{2 \sqrt {2}}-\frac {1}{4} \text {arctanh}(\sin (x)) \]

[In]

Int[Csc[4*x]*Sin[x],x]

[Out]

-1/4*ArcTanh[Sin[x]] + ArcTanh[Sqrt[2]*Sin[x]]/(2*Sqrt[2])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 1107

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/(b/
2 - q/2 + c*x^2), x], x] - Dist[c/q, Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*
a*c, 0] && PosQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {1}{4-12 x^2+8 x^4} \, dx,x,\sin (x)\right ) \\ & = 2 \text {Subst}\left (\int \frac {1}{-8+8 x^2} \, dx,x,\sin (x)\right )-2 \text {Subst}\left (\int \frac {1}{-4+8 x^2} \, dx,x,\sin (x)\right ) \\ & = -\frac {1}{4} \text {arctanh}(\sin (x))+\frac {\text {arctanh}\left (\sqrt {2} \sin (x)\right )}{2 \sqrt {2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00 \[ \int \csc (4 x) \sin (x) \, dx=-\frac {1}{4} \text {arctanh}(\sin (x))+\frac {\text {arctanh}\left (\sqrt {2} \sin (x)\right )}{2 \sqrt {2}} \]

[In]

Integrate[Csc[4*x]*Sin[x],x]

[Out]

-1/4*ArcTanh[Sin[x]] + ArcTanh[Sqrt[2]*Sin[x]]/(2*Sqrt[2])

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08

method result size
default \(\frac {\ln \left (\sin \left (x \right )-1\right )}{8}-\frac {\ln \left (\sin \left (x \right )+1\right )}{8}+\frac {\operatorname {arctanh}\left (\sin \left (x \right ) \sqrt {2}\right ) \sqrt {2}}{4}\) \(28\)
risch \(\frac {\ln \left ({\mathrm e}^{i x}-i\right )}{4}-\frac {\ln \left (i+{\mathrm e}^{i x}\right )}{4}+\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}+i \sqrt {2}\, {\mathrm e}^{i x}-1\right )}{8}-\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}-i \sqrt {2}\, {\mathrm e}^{i x}-1\right )}{8}\) \(72\)

[In]

int(sin(x)/sin(4*x),x,method=_RETURNVERBOSE)

[Out]

1/8*ln(sin(x)-1)-1/8*ln(sin(x)+1)+1/4*arctanh(sin(x)*2^(1/2))*2^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 50 vs. \(2 (18) = 36\).

Time = 0.26 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.92 \[ \int \csc (4 x) \sin (x) \, dx=\frac {1}{8} \, \sqrt {2} \log \left (-\frac {2 \, \cos \left (x\right )^{2} - 2 \, \sqrt {2} \sin \left (x\right ) - 3}{2 \, \cos \left (x\right )^{2} - 1}\right ) - \frac {1}{8} \, \log \left (\sin \left (x\right ) + 1\right ) + \frac {1}{8} \, \log \left (-\sin \left (x\right ) + 1\right ) \]

[In]

integrate(sin(x)/sin(4*x),x, algorithm="fricas")

[Out]

1/8*sqrt(2)*log(-(2*cos(x)^2 - 2*sqrt(2)*sin(x) - 3)/(2*cos(x)^2 - 1)) - 1/8*log(sin(x) + 1) + 1/8*log(-sin(x)
 + 1)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 294 vs. \(2 (22) = 44\).

Time = 3.24 (sec) , antiderivative size = 294, normalized size of antiderivative = 11.31 \[ \int \csc (4 x) \sin (x) \, dx=\frac {27720 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )}}{110880 \sqrt {2} + 156808} + \frac {39202 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )}}{110880 \sqrt {2} + 156808} - \frac {39202 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )}}{110880 \sqrt {2} + 156808} - \frac {27720 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )}}{110880 \sqrt {2} + 156808} + \frac {27720 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 + \sqrt {2} \right )}}{110880 \sqrt {2} + 156808} + \frac {19601 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 + \sqrt {2} \right )}}{110880 \sqrt {2} + 156808} + \frac {27720 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 + \sqrt {2} \right )}}{110880 \sqrt {2} + 156808} + \frac {19601 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 + \sqrt {2} \right )}}{110880 \sqrt {2} + 156808} - \frac {19601 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} - \sqrt {2} - 1 \right )}}{110880 \sqrt {2} + 156808} - \frac {27720 \log {\left (\tan {\left (\frac {x}{2} \right )} - \sqrt {2} - 1 \right )}}{110880 \sqrt {2} + 156808} - \frac {19601 \sqrt {2} \log {\left (\tan {\left (\frac {x}{2} \right )} - \sqrt {2} + 1 \right )}}{110880 \sqrt {2} + 156808} - \frac {27720 \log {\left (\tan {\left (\frac {x}{2} \right )} - \sqrt {2} + 1 \right )}}{110880 \sqrt {2} + 156808} \]

[In]

integrate(sin(x)/sin(4*x),x)

[Out]

27720*sqrt(2)*log(tan(x/2) - 1)/(110880*sqrt(2) + 156808) + 39202*log(tan(x/2) - 1)/(110880*sqrt(2) + 156808)
- 39202*log(tan(x/2) + 1)/(110880*sqrt(2) + 156808) - 27720*sqrt(2)*log(tan(x/2) + 1)/(110880*sqrt(2) + 156808
) + 27720*log(tan(x/2) - 1 + sqrt(2))/(110880*sqrt(2) + 156808) + 19601*sqrt(2)*log(tan(x/2) - 1 + sqrt(2))/(1
10880*sqrt(2) + 156808) + 27720*log(tan(x/2) + 1 + sqrt(2))/(110880*sqrt(2) + 156808) + 19601*sqrt(2)*log(tan(
x/2) + 1 + sqrt(2))/(110880*sqrt(2) + 156808) - 19601*sqrt(2)*log(tan(x/2) - sqrt(2) - 1)/(110880*sqrt(2) + 15
6808) - 27720*log(tan(x/2) - sqrt(2) - 1)/(110880*sqrt(2) + 156808) - 19601*sqrt(2)*log(tan(x/2) - sqrt(2) + 1
)/(110880*sqrt(2) + 156808) - 27720*log(tan(x/2) - sqrt(2) + 1)/(110880*sqrt(2) + 156808)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 171 vs. \(2 (18) = 36\).

Time = 0.28 (sec) , antiderivative size = 171, normalized size of antiderivative = 6.58 \[ \int \csc (4 x) \sin (x) \, dx=\frac {1}{16} \, \sqrt {2} \log \left (2 \, \cos \left (x\right )^{2} + 2 \, \sin \left (x\right )^{2} + 2 \, \sqrt {2} \cos \left (x\right ) + 2 \, \sqrt {2} \sin \left (x\right ) + 2\right ) - \frac {1}{16} \, \sqrt {2} \log \left (2 \, \cos \left (x\right )^{2} + 2 \, \sin \left (x\right )^{2} + 2 \, \sqrt {2} \cos \left (x\right ) - 2 \, \sqrt {2} \sin \left (x\right ) + 2\right ) + \frac {1}{16} \, \sqrt {2} \log \left (2 \, \cos \left (x\right )^{2} + 2 \, \sin \left (x\right )^{2} - 2 \, \sqrt {2} \cos \left (x\right ) + 2 \, \sqrt {2} \sin \left (x\right ) + 2\right ) - \frac {1}{16} \, \sqrt {2} \log \left (2 \, \cos \left (x\right )^{2} + 2 \, \sin \left (x\right )^{2} - 2 \, \sqrt {2} \cos \left (x\right ) - 2 \, \sqrt {2} \sin \left (x\right ) + 2\right ) - \frac {1}{8} \, \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} + 2 \, \sin \left (x\right ) + 1\right ) + \frac {1}{8} \, \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} - 2 \, \sin \left (x\right ) + 1\right ) \]

[In]

integrate(sin(x)/sin(4*x),x, algorithm="maxima")

[Out]

1/16*sqrt(2)*log(2*cos(x)^2 + 2*sin(x)^2 + 2*sqrt(2)*cos(x) + 2*sqrt(2)*sin(x) + 2) - 1/16*sqrt(2)*log(2*cos(x
)^2 + 2*sin(x)^2 + 2*sqrt(2)*cos(x) - 2*sqrt(2)*sin(x) + 2) + 1/16*sqrt(2)*log(2*cos(x)^2 + 2*sin(x)^2 - 2*sqr
t(2)*cos(x) + 2*sqrt(2)*sin(x) + 2) - 1/16*sqrt(2)*log(2*cos(x)^2 + 2*sin(x)^2 - 2*sqrt(2)*cos(x) - 2*sqrt(2)*
sin(x) + 2) - 1/8*log(cos(x)^2 + sin(x)^2 + 2*sin(x) + 1) + 1/8*log(cos(x)^2 + sin(x)^2 - 2*sin(x) + 1)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 48 vs. \(2 (18) = 36\).

Time = 0.29 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.85 \[ \int \csc (4 x) \sin (x) \, dx=-\frac {1}{8} \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (x\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (x\right ) \right |}}\right ) - \frac {1}{8} \, \log \left (\sin \left (x\right ) + 1\right ) + \frac {1}{8} \, \log \left (-\sin \left (x\right ) + 1\right ) \]

[In]

integrate(sin(x)/sin(4*x),x, algorithm="giac")

[Out]

-1/8*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(x))/abs(2*sqrt(2) + 4*sin(x))) - 1/8*log(sin(x) + 1) + 1/8*log(-sin(x)
 + 1)

Mupad [B] (verification not implemented)

Time = 0.50 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.04 \[ \int \csc (4 x) \sin (x) \, dx=\frac {\sqrt {2}\,\mathrm {atanh}\left (\sqrt {2}\,\sin \left (x\right )\right )}{4}-\frac {\mathrm {atanh}\left (\frac {\sin \left (\frac {x}{2}\right )}{\cos \left (\frac {x}{2}\right )}\right )}{2} \]

[In]

int(sin(x)/sin(4*x),x)

[Out]

(2^(1/2)*atanh(2^(1/2)*sin(x)))/4 - atanh(sin(x/2)/cos(x/2))/2