\(\int x \sec (x) \tan ^3(x) \, dx\) [488]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 30 \[ \int x \sec (x) \tan ^3(x) \, dx=\frac {5}{6} \text {arctanh}(\sin (x))-x \sec (x)+\frac {1}{3} x \sec ^3(x)-\frac {1}{6} \sec (x) \tan (x) \]

[Out]

5/6*arctanh(sin(x))-x*sec(x)+1/3*x*sec(x)^3-1/6*sec(x)*tan(x)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2686, 4502, 3855, 3853} \[ \int x \sec (x) \tan ^3(x) \, dx=\frac {5}{6} \text {arctanh}(\sin (x))+\frac {1}{3} x \sec ^3(x)-x \sec (x)-\frac {1}{6} \tan (x) \sec (x) \]

[In]

Int[x*Sec[x]*Tan[x]^3,x]

[Out]

(5*ArcTanh[Sin[x]])/6 - x*Sec[x] + (x*Sec[x]^3)/3 - (Sec[x]*Tan[x])/6

Rule 2686

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4502

Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Modul
e[{u = IntHide[Sec[a + b*x]^n*Tan[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - Dist[d*m, Int[(c + d*x)^(m - 1)*u
, x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2])

Rubi steps \begin{align*} \text {integral}& = -x \sec (x)+\frac {1}{3} x \sec ^3(x)-\int \left (-\sec (x)+\frac {\sec ^3(x)}{3}\right ) \, dx \\ & = -x \sec (x)+\frac {1}{3} x \sec ^3(x)-\frac {1}{3} \int \sec ^3(x) \, dx+\int \sec (x) \, dx \\ & = \text {arctanh}(\sin (x))-x \sec (x)+\frac {1}{3} x \sec ^3(x)-\frac {1}{6} \sec (x) \tan (x)-\frac {1}{6} \int \sec (x) \, dx \\ & = \frac {5}{6} \text {arctanh}(\sin (x))-x \sec (x)+\frac {1}{3} x \sec ^3(x)-\frac {1}{6} \sec (x) \tan (x) \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(104\) vs. \(2(30)=60\).

Time = 0.11 (sec) , antiderivative size = 104, normalized size of antiderivative = 3.47 \[ \int x \sec (x) \tan ^3(x) \, dx=-\frac {1}{24} \sec ^3(x) \left (4 x+12 x \cos (2 x)+5 \cos (3 x) \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+15 \cos (x) \left (\log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )-\log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )\right )-5 \cos (3 x) \log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )+2 \sin (2 x)\right ) \]

[In]

Integrate[x*Sec[x]*Tan[x]^3,x]

[Out]

-1/24*(Sec[x]^3*(4*x + 12*x*Cos[2*x] + 5*Cos[3*x]*Log[Cos[x/2] - Sin[x/2]] + 15*Cos[x]*(Log[Cos[x/2] - Sin[x/2
]] - Log[Cos[x/2] + Sin[x/2]]) - 5*Cos[3*x]*Log[Cos[x/2] + Sin[x/2]] + 2*Sin[2*x]))

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.43

method result size
parallelrisch \(\ln \left (\left (-\cot \left (x \right )+1+\csc \left (x \right )\right )^{\frac {5}{6}}\right )+\ln \left (\frac {1}{\left (-\cot \left (x \right )+\csc \left (x \right )-1\right )^{\frac {5}{6}}}\right )+\frac {x \left (\sec ^{3}\left (x \right )\right )}{3}+\frac {\left (-6 x -\tan \left (x \right )\right ) \sec \left (x \right )}{6}\) \(43\)
norman \(\frac {\frac {2 x}{3}-\frac {\left (\tan ^{5}\left (\frac {x}{2}\right )\right )}{3}-2 x \left (\tan ^{2}\left (\frac {x}{2}\right )\right )-2 x \left (\tan ^{4}\left (\frac {x}{2}\right )\right )+\frac {2 x \left (\tan ^{6}\left (\frac {x}{2}\right )\right )}{3}+\frac {\tan \left (\frac {x}{2}\right )}{3}}{\left (\tan ^{2}\left (\frac {x}{2}\right )-1\right )^{3}}-\frac {5 \ln \left (\tan \left (\frac {x}{2}\right )-1\right )}{6}+\frac {5 \ln \left (1+\tan \left (\frac {x}{2}\right )\right )}{6}\) \(76\)
risch \(-\frac {{\mathrm e}^{i x} \left (6 x \,{\mathrm e}^{4 i x}+4 x \,{\mathrm e}^{2 i x}-i {\mathrm e}^{4 i x}+6 x +i\right )}{3 \left ({\mathrm e}^{2 i x}+1\right )^{3}}+\frac {5 \ln \left (i+{\mathrm e}^{i x}\right )}{6}-\frac {5 \ln \left ({\mathrm e}^{i x}-i\right )}{6}\) \(78\)

[In]

int(x*sin(x)^3/cos(x)^4,x,method=_RETURNVERBOSE)

[Out]

ln((-cot(x)+1+csc(x))^(5/6))+ln(1/(-cot(x)+csc(x)-1)^(5/6))+1/3*x*sec(x)^3+1/6*(-6*x-tan(x))*sec(x)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.57 \[ \int x \sec (x) \tan ^3(x) \, dx=\frac {5 \, \cos \left (x\right )^{3} \log \left (\sin \left (x\right ) + 1\right ) - 5 \, \cos \left (x\right )^{3} \log \left (-\sin \left (x\right ) + 1\right ) - 12 \, x \cos \left (x\right )^{2} - 2 \, \cos \left (x\right ) \sin \left (x\right ) + 4 \, x}{12 \, \cos \left (x\right )^{3}} \]

[In]

integrate(x*sin(x)^3/cos(x)^4,x, algorithm="fricas")

[Out]

1/12*(5*cos(x)^3*log(sin(x) + 1) - 5*cos(x)^3*log(-sin(x) + 1) - 12*x*cos(x)^2 - 2*cos(x)*sin(x) + 4*x)/cos(x)
^3

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 551 vs. \(2 (29) = 58\).

Time = 0.64 (sec) , antiderivative size = 551, normalized size of antiderivative = 18.37 \[ \int x \sec (x) \tan ^3(x) \, dx=\frac {4 x \tan ^{6}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {12 x \tan ^{4}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {12 x \tan ^{2}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {4 x}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {5 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )} \tan ^{6}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {15 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )} \tan ^{4}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {15 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )} \tan ^{2}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {5 \log {\left (\tan {\left (\frac {x}{2} \right )} - 1 \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {5 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )} \tan ^{6}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {15 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )} \tan ^{4}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {15 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )} \tan ^{2}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {5 \log {\left (\tan {\left (\frac {x}{2} \right )} + 1 \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} - \frac {2 \tan ^{5}{\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} + \frac {2 \tan {\left (\frac {x}{2} \right )}}{6 \tan ^{6}{\left (\frac {x}{2} \right )} - 18 \tan ^{4}{\left (\frac {x}{2} \right )} + 18 \tan ^{2}{\left (\frac {x}{2} \right )} - 6} \]

[In]

integrate(x*sin(x)**3/cos(x)**4,x)

[Out]

4*x*tan(x/2)**6/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) - 12*x*tan(x/2)**4/(6*tan(x/2)**6 - 18*t
an(x/2)**4 + 18*tan(x/2)**2 - 6) - 12*x*tan(x/2)**2/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) + 4*
x/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) - 5*log(tan(x/2) - 1)*tan(x/2)**6/(6*tan(x/2)**6 - 18*
tan(x/2)**4 + 18*tan(x/2)**2 - 6) + 15*log(tan(x/2) - 1)*tan(x/2)**4/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(
x/2)**2 - 6) - 15*log(tan(x/2) - 1)*tan(x/2)**2/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) + 5*log(
tan(x/2) - 1)/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) + 5*log(tan(x/2) + 1)*tan(x/2)**6/(6*tan(x
/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) - 15*log(tan(x/2) + 1)*tan(x/2)**4/(6*tan(x/2)**6 - 18*tan(x/2)*
*4 + 18*tan(x/2)**2 - 6) + 15*log(tan(x/2) + 1)*tan(x/2)**2/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 -
 6) - 5*log(tan(x/2) + 1)/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) - 2*tan(x/2)**5/(6*tan(x/2)**6
 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6) + 2*tan(x/2)/(6*tan(x/2)**6 - 18*tan(x/2)**4 + 18*tan(x/2)**2 - 6)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 619 vs. \(2 (24) = 48\).

Time = 0.28 (sec) , antiderivative size = 619, normalized size of antiderivative = 20.63 \[ \int x \sec (x) \tan ^3(x) \, dx=\text {Too large to display} \]

[In]

integrate(x*sin(x)^3/cos(x)^4,x, algorithm="maxima")

[Out]

-1/12*(48*x*sin(3*x)*sin(2*x) + 4*(6*x*cos(5*x) + 4*x*cos(3*x) + 6*x*cos(x) + sin(5*x) - sin(x))*cos(6*x) + 12
*(6*x*cos(4*x) + 6*x*cos(2*x) + 2*x - sin(4*x) - sin(2*x))*cos(5*x) + 12*(4*x*cos(3*x) + 6*x*cos(x) - sin(x))*
cos(4*x) + 16*(3*x*cos(2*x) + x)*cos(3*x) + 12*(6*x*cos(x) - sin(x))*cos(2*x) + 24*x*cos(x) - 5*(2*(3*cos(4*x)
 + 3*cos(2*x) + 1)*cos(6*x) + cos(6*x)^2 + 6*(3*cos(2*x) + 1)*cos(4*x) + 9*cos(4*x)^2 + 9*cos(2*x)^2 + 6*(sin(
4*x) + sin(2*x))*sin(6*x) + sin(6*x)^2 + 9*sin(4*x)^2 + 18*sin(4*x)*sin(2*x) + 9*sin(2*x)^2 + 6*cos(2*x) + 1)*
log(cos(x)^2 + sin(x)^2 + 2*sin(x) + 1) + 5*(2*(3*cos(4*x) + 3*cos(2*x) + 1)*cos(6*x) + cos(6*x)^2 + 6*(3*cos(
2*x) + 1)*cos(4*x) + 9*cos(4*x)^2 + 9*cos(2*x)^2 + 6*(sin(4*x) + sin(2*x))*sin(6*x) + sin(6*x)^2 + 9*sin(4*x)^
2 + 18*sin(4*x)*sin(2*x) + 9*sin(2*x)^2 + 6*cos(2*x) + 1)*log(cos(x)^2 + sin(x)^2 - 2*sin(x) + 1) + 4*(6*x*sin
(5*x) + 4*x*sin(3*x) + 6*x*sin(x) - cos(5*x) + cos(x))*sin(6*x) + 4*(18*x*sin(4*x) + 18*x*sin(2*x) + 3*cos(4*x
) + 3*cos(2*x) + 1)*sin(5*x) + 12*(4*x*sin(3*x) + 6*x*sin(x) + cos(x))*sin(4*x) + 12*(6*x*sin(x) + cos(x))*sin
(2*x) - 4*sin(x))/(2*(3*cos(4*x) + 3*cos(2*x) + 1)*cos(6*x) + cos(6*x)^2 + 6*(3*cos(2*x) + 1)*cos(4*x) + 9*cos
(4*x)^2 + 9*cos(2*x)^2 + 6*(sin(4*x) + sin(2*x))*sin(6*x) + sin(6*x)^2 + 9*sin(4*x)^2 + 18*sin(4*x)*sin(2*x) +
 9*sin(2*x)^2 + 6*cos(2*x) + 1)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 341 vs. \(2 (24) = 48\).

Time = 0.43 (sec) , antiderivative size = 341, normalized size of antiderivative = 11.37 \[ \int x \sec (x) \tan ^3(x) \, dx=\frac {8 \, x \tan \left (\frac {1}{2} \, x\right )^{6} + 5 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{6} - 5 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{6} - 24 \, x \tan \left (\frac {1}{2} \, x\right )^{4} - 15 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{4} + 15 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{4} - 4 \, \tan \left (\frac {1}{2} \, x\right )^{5} - 24 \, x \tan \left (\frac {1}{2} \, x\right )^{2} + 15 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{2} - 15 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) \tan \left (\frac {1}{2} \, x\right )^{2} + 8 \, x - 5 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) + 5 \, \log \left (\frac {2 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{2} - 2 \, \tan \left (\frac {1}{2} \, x\right ) + 1\right )}}{\tan \left (\frac {1}{2} \, x\right )^{2} + 1}\right ) + 4 \, \tan \left (\frac {1}{2} \, x\right )}{12 \, {\left (\tan \left (\frac {1}{2} \, x\right )^{6} - 3 \, \tan \left (\frac {1}{2} \, x\right )^{4} + 3 \, \tan \left (\frac {1}{2} \, x\right )^{2} - 1\right )}} \]

[In]

integrate(x*sin(x)^3/cos(x)^4,x, algorithm="giac")

[Out]

1/12*(8*x*tan(1/2*x)^6 + 5*log(2*(tan(1/2*x)^2 + 2*tan(1/2*x) + 1)/(tan(1/2*x)^2 + 1))*tan(1/2*x)^6 - 5*log(2*
(tan(1/2*x)^2 - 2*tan(1/2*x) + 1)/(tan(1/2*x)^2 + 1))*tan(1/2*x)^6 - 24*x*tan(1/2*x)^4 - 15*log(2*(tan(1/2*x)^
2 + 2*tan(1/2*x) + 1)/(tan(1/2*x)^2 + 1))*tan(1/2*x)^4 + 15*log(2*(tan(1/2*x)^2 - 2*tan(1/2*x) + 1)/(tan(1/2*x
)^2 + 1))*tan(1/2*x)^4 - 4*tan(1/2*x)^5 - 24*x*tan(1/2*x)^2 + 15*log(2*(tan(1/2*x)^2 + 2*tan(1/2*x) + 1)/(tan(
1/2*x)^2 + 1))*tan(1/2*x)^2 - 15*log(2*(tan(1/2*x)^2 - 2*tan(1/2*x) + 1)/(tan(1/2*x)^2 + 1))*tan(1/2*x)^2 + 8*
x - 5*log(2*(tan(1/2*x)^2 + 2*tan(1/2*x) + 1)/(tan(1/2*x)^2 + 1)) + 5*log(2*(tan(1/2*x)^2 - 2*tan(1/2*x) + 1)/
(tan(1/2*x)^2 + 1)) + 4*tan(1/2*x))/(tan(1/2*x)^6 - 3*tan(1/2*x)^4 + 3*tan(1/2*x)^2 - 1)

Mupad [B] (verification not implemented)

Time = 0.56 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.17 \[ \int x \sec (x) \tan ^3(x) \, dx=-\frac {x\,{\cos \left (x\right )}^2-\frac {x}{3}+\frac {\sin \left (2\,x\right )}{12}}{{\cos \left (x\right )}^3}-\frac {\mathrm {atan}\left (\cos \left (x\right )+\sin \left (x\right )\,1{}\mathrm {i}\right )\,5{}\mathrm {i}}{3} \]

[In]

int((x*sin(x)^3)/cos(x)^4,x)

[Out]

- (atan(cos(x) + sin(x)*1i)*5i)/3 - (sin(2*x)/12 - x/3 + x*cos(x)^2)/cos(x)^3