\(\int \frac {x \arctan (\sqrt {1+x^2})}{\sqrt {1+x^2}} \, dx\) [700]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 31 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {1+x^2} \arctan \left (\sqrt {1+x^2}\right )-\frac {1}{2} \log \left (2+x^2\right ) \]

[Out]

-1/2*ln(x^2+2)+arctan((x^2+1)^(1/2))*(x^2+1)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {267, 5315, 266} \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {x^2+1} \arctan \left (\sqrt {x^2+1}\right )-\frac {1}{2} \log \left (x^2+2\right ) \]

[In]

Int[(x*ArcTan[Sqrt[1 + x^2]])/Sqrt[1 + x^2],x]

[Out]

Sqrt[1 + x^2]*ArcTan[Sqrt[1 + x^2]] - Log[2 + x^2]/2

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5315

Int[((a_.) + ArcTan[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[a + b*ArcTan[u], w, x] - Dist
[b, Int[SimplifyIntegrand[w*(D[u, x]/(1 + u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x]
 && InverseFunctionFreeQ[u, x] &&  !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[Functi
onOfLinear[v*(a + b*ArcTan[u]), x]]

Rubi steps \begin{align*} \text {integral}& = \sqrt {1+x^2} \arctan \left (\sqrt {1+x^2}\right )-\int \frac {x}{2+x^2} \, dx \\ & = \sqrt {1+x^2} \arctan \left (\sqrt {1+x^2}\right )-\frac {1}{2} \log \left (2+x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {1+x^2} \arctan \left (\sqrt {1+x^2}\right )-\frac {1}{2} \log \left (2+x^2\right ) \]

[In]

Integrate[(x*ArcTan[Sqrt[1 + x^2]])/Sqrt[1 + x^2],x]

[Out]

Sqrt[1 + x^2]*ArcTan[Sqrt[1 + x^2]] - Log[2 + x^2]/2

Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.84

method result size
derivativedivides \(-\frac {\ln \left (x^{2}+2\right )}{2}+\arctan \left (\sqrt {x^{2}+1}\right ) \sqrt {x^{2}+1}\) \(26\)
default \(-\frac {\ln \left (x^{2}+2\right )}{2}+\arctan \left (\sqrt {x^{2}+1}\right ) \sqrt {x^{2}+1}\) \(26\)

[In]

int(x*arctan((x^2+1)^(1/2))/(x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*ln(x^2+2)+arctan((x^2+1)^(1/2))*(x^2+1)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {x^{2} + 1} \arctan \left (\sqrt {x^{2} + 1}\right ) - \frac {1}{2} \, \log \left (x^{2} + 2\right ) \]

[In]

integrate(x*arctan((x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="fricas")

[Out]

sqrt(x^2 + 1)*arctan(sqrt(x^2 + 1)) - 1/2*log(x^2 + 2)

Sympy [A] (verification not implemented)

Time = 0.57 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.84 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {x^{2} + 1} \operatorname {atan}{\left (\sqrt {x^{2} + 1} \right )} - \frac {\log {\left (x^{2} + 2 \right )}}{2} \]

[In]

integrate(x*atan((x**2+1)**(1/2))/(x**2+1)**(1/2),x)

[Out]

sqrt(x**2 + 1)*atan(sqrt(x**2 + 1)) - log(x**2 + 2)/2

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {x^{2} + 1} \arctan \left (\sqrt {x^{2} + 1}\right ) - \frac {1}{2} \, \log \left (x^{2} + 2\right ) \]

[In]

integrate(x*arctan((x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="maxima")

[Out]

sqrt(x^2 + 1)*arctan(sqrt(x^2 + 1)) - 1/2*log(x^2 + 2)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\sqrt {x^{2} + 1} \arctan \left (\sqrt {x^{2} + 1}\right ) - \frac {1}{2} \, \log \left (x^{2} + 2\right ) \]

[In]

integrate(x*arctan((x^2+1)^(1/2))/(x^2+1)^(1/2),x, algorithm="giac")

[Out]

sqrt(x^2 + 1)*arctan(sqrt(x^2 + 1)) - 1/2*log(x^2 + 2)

Mupad [B] (verification not implemented)

Time = 0.64 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \frac {x \arctan \left (\sqrt {1+x^2}\right )}{\sqrt {1+x^2}} \, dx=\mathrm {atan}\left (\sqrt {x^2+1}\right )\,\sqrt {x^2+1}-\frac {\ln \left (x^2+2\right )}{2} \]

[In]

int((x*atan((x^2 + 1)^(1/2)))/(x^2 + 1)^(1/2),x)

[Out]

atan((x^2 + 1)^(1/2))*(x^2 + 1)^(1/2) - log(x^2 + 2)/2